留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

MXene/聚合物复合材料的合成及其应用研究进展

姚金辰 王李波 李浩楠 戴亚辉 胡前库 周爱国

姚金辰, 王李波, 李浩楠, 等. MXene/聚合物复合材料的合成及其应用研究进展[J]. 复合材料学报, 2022, 39(4): 1457-1468. doi: 10.13801/j.cnki.fhclxb.20210830.002
引用本文: 姚金辰, 王李波, 李浩楠, 等. MXene/聚合物复合材料的合成及其应用研究进展[J]. 复合材料学报, 2022, 39(4): 1457-1468. doi: 10.13801/j.cnki.fhclxb.20210830.002
YAO Jinchen, WANG Libo, LI Haonan, et al. Research progress in synthesis and application of MXene/polymer composites[J]. Acta Materiae Compositae Sinica, 2022, 39(4): 1457-1468. doi: 10.13801/j.cnki.fhclxb.20210830.002
Citation: YAO Jinchen, WANG Libo, LI Haonan, et al. Research progress in synthesis and application of MXene/polymer composites[J]. Acta Materiae Compositae Sinica, 2022, 39(4): 1457-1468. doi: 10.13801/j.cnki.fhclxb.20210830.002

MXene/聚合物复合材料的合成及其应用研究进展

doi: 10.13801/j.cnki.fhclxb.20210830.002
基金项目: 国家自然科学基金 (51772077);河南省自然科学基金(182300410228);河南省高校科技创新团队(19IRTSTHN027)
详细信息
    通讯作者:

    王李波,博士,副教授,硕士生导师,研究方向为纳米复合材料 E-mail: wanglibo537@hpu.edu.cn

  • 中图分类号: TB332

Research progress in synthesis and application of MXene/polymer composites

  • 摘要: MXene是一种新颖的二维层状纳米材料,具有大的比表面积和丰富的表面官能团,与聚合物基体复合可显著改善聚合物基复合材料的性能或拓宽其应用范围,因此得到了广泛的研究。本文简要总结了MXene、MXene/聚合物复合材料的制备方法,并对MXene/聚合物复合材料的力学性能、热学性能、摩擦性能和电磁屏蔽等性能进行了阐述,总结了最新的研究进展,最后展望了MXene/聚合物复合材料的发展前景。

     

  • 图  1  MAX相中的不同原子 (a)、MAX化合物自上而下合成MXene纳米片的步骤 (b)、Ti3AlC2 MAX相氢氟酸(HF)处理之前 (c) 和处理之后 (d) 的SEM图像、机械搅拌后剥落MXene (e)[12]

    Figure  1.  Different atoms in MAX phase (a), top-down synthesis steps of MXene nanosheets from their MAX compound (b), SEM images of Ti3AlC2 MAX phase before (c) and after (d) hydrofluoric acid (HF) treatments, exfoliated MXene after a mechanical agitation (e)[12]

    图  2  MXene/聚偏二氟乙烯(PVDF)复合材料的制备过程示意图[32]

    Figure  2.  Schematic of preparation process of MXene/polyvinylidene fluoride (PVDF) composites[32]

    图  3  MXene/聚合物复合材料原位聚合示意图[52]

    Figure  3.  Schematic of in situ polymerization blending for MXene/polymer composites[52]

    图  4  MXene/热塑性聚氨酯(TPU)纳米复合材料的制备过程示意图[55]

    Figure  4.  Illustration for the preparation of MXene/thermoplastic polyurethane (TPU) nanocomposites[55]

    PEG—Polyethylene glycol

    图  5  Ti3C2改善力学性能的机制示意图[53]

    Figure  5.  Schematic representation of the mechanism behind the improvement of mechanical properties by the Ti3C2[53]

    DN101—Chemigum

    图  6  (a) 纯环氧和Ti3C2/环氧复合材料的热扩散率和热导率,其中插图为热导率增强(TCE)图;(b) 与文献关于环氧复合材料结果的比较;(c) 纯环氧和Ti3C2/环氧复合材料在不同温度下的导热系数;(d) 纯环氧和Ti3C2/环氧复合材料的加热和冷却循环曲线[67]

    Figure  6.  (a) Thermal diffusivity and thermal conductivity of neat epoxy and Ti3C2/epoxy composites, thermal conductivity enhancement (TCE) was calculated and shown in the inset of (a); (b) Comparison of thermal conductivity results in this work with those of previous reports on epoxy composites; (c) Thermal conductivity of neat epoxy and Ti3C2/epoxy composites at different temperatures; (d) Heating and cooling cycles of neat epoxy and Ti3C2/epoxy composites[67]

    图  7  环氧纳米复合材料的摩擦系数 (a) 和磨损率值 (b);纯环氧树脂 (c)、Ti3C2(M)-EP (d)、石墨烯(G)-EP (e) 和Ti3C2/石墨烯(MG)-EP (f) 复合材料磨损表面的SEM图像[74]

    Figure  7.  Friction coefficient (a) and wear rate values (b) of the epoxy nanocomposites; SEM images of worn surfaces of neat epoxy (c), Ti3C2 (M)-EP (d), graphene(G)-EP (e) and Ti3C2/graphene(MG)-EP (f)[74]

    图  8  Ti3C2Tx MXene复合膜的电磁屏蔽性能和屏蔽机制[83]

    Figure  8.  Electromagnetic shielding properties and shielding mechanism of Ti3C2Tx MXene composite membrane[83]

    EMI SE—Electromagnetic shielding efficiency; SER—Reflection shielding efficiency; SEA—Absorption shielding efficiency; SET—Overall EMI shielding efficiency; BC—Bacterial cellulose; SSE—Specific EMI shielding efficiency; PVA—Polyvinyl alcohol; SA—Sodium alginate; ANF—Aramid nanofiber; TOCNF—2,2,6,6-tetramethyl-1-piperidinyloxy oxidized cellulose nanofiber; PEDOT:PSS—Poly(3,4-ethylenedioxythiophene): poly(styrenesulfonic acid); CNF—Cellulose nanofiber

  • [1] LI X, WANG C, CAO Y, et al. Functional MXene materials: Progress of their applications[J]. Chemistry-An Asian Journal,2018,13(19):2742-2757. doi: 10.1002/asia.201800543
    [2] LEI J C, ZHANG X, ZHOU Z. Recent advances in MXene: Preparation, properties, and applications[J]. Frontiers of Physics,2015,10(3):276-286. doi: 10.1007/s11467-015-0493-x
    [3] 刘超, 李茜, 郝丽芬, 等. MXene 的功能化改性及其应用研究进展[J]. 复合材料学报, 2021, 38(4):1020-1028.

    LIU C, LI X, HAO L F, et al. Research progress of functional modification of MXene and its applications[J]. Acta Materiae Compositae Sinica,2021,38(4):1020-1028(in Chinese).
    [4] NAGUIB M, MOCHALIN V N, BARSOUM M W, et al. 25th anniversary article: MXenes: A new family of two-dimensional materials[J]. Advanced Materials,2014,26(7):992-1005. doi: 10.1002/adma.201304138
    [5] ANASORI B, XIE Y, BEIDAGHI M, et al. Two-dimensional, ordered, double transition metals carbides (MXenes)[J]. ACS Nano,2015,9(10):9507-9516. doi: 10.1021/acsnano.5b03591
    [6] BARSOUM M W. MAX phases: Properties of machinable ternary carbides and nitrides [M]. Hoboken: John Wiley & Sons, 2013.
    [7] GUPTA S, BARSOUM M. On the tribology of the MAX phases and their composites during dry sliding: A review[J]. Wear,2011,271(9-10):1878-1894. doi: 10.1016/j.wear.2011.01.043
    [8] AGHAMOHAMMADI H, HEIDARPOUR A, JAMSHIDI R, et al. Tribological behavior of epoxy composites filled with nanodiamond and Ti3AlC2-TiC particles: A comparative study[J]. Ceramics International,2019,45(7):9106-9113. doi: 10.1016/j.ceramint.2019.01.249
    [9] JAMSHIDI R, HEIDARPOUR A, AGHAMOHAMMADI H, et al. Improvement in the mechanical and tribological behavior of epoxy matrix with the inclusion of synthesized Ti3AlC2 MAX particles[J]. Journal of Composite Materials,2019,53(26-27):3819-3827. doi: 10.1177/0021998319848140
    [10] WEI Y, ZHANG P, SOOMRO R A, et al. Advances in the synthesis of 2D Mxenes[J]. Advanced Materials, 2021, 33(39): 2103148.
    [11] 李正阳, 周爱国, 王李波, 等. 二维晶体 MXene 的制备与性能研究进展[J]. 硅酸盐通报, 2013, 32(8):1562-1566.

    LI Z Y, ZHOU A G, WANG L B, et al. Research progress on preparation and properties of two-dimensional crystal MXene[J]. Bulletin of the Chinese Ceramic Society,2013,32(8):1562-1566(in Chinese).
    [12] MALAKI M, VARMA R S. Mechanotribological aspects of MXene-reinforced nanocomposites[J]. Advanced Materials,2020,32(38):2003154. doi: 10.1002/adma.202003154
    [13] NAGUIB M, KURTOGLU M, PRESSER V, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2[J]. Advanced Materials,2011,23(37):4248-4253. doi: 10.1002/adma.201102306
    [14] 孙丹丹, 胡前库, 李正阳, 等. 新型二维晶体 MXene 的研究进展[J]. 人工晶体学报, 2014, 43(11):2950-2956. doi: 10.3969/j.issn.1000-985X.2014.11.033

    SUN D D, HU Q K, LI Z Y, et al. Research progress of new two-dimensional MXene crytals[J]. Journal of Synthetic Crystals,2014,43(11):2950-2956(in Chinese). doi: 10.3969/j.issn.1000-985X.2014.11.033
    [15] GHIDIU M, LUKATSKAYA M R, ZHAO M Q, et al. Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance[J]. Nature,2014,516(7529):78-81. doi: 10.1038/nature13970
    [16] ANASORI B, LUKATSKAYA M R, GOGOTSI Y. 2D metal carbides and nitrides (MXenes) for energy storage[J]. Nature Reviews Materials,2017,2(2):16098.
    [17] WANG L, ZHANG H, WANG B, et al. Synthesis and electrochemical performance of Ti3C2Tx with hydrothermal process[J]. Electronic Materials Letters,2016,12(5):702-710. doi: 10.1007/s13391-016-6088-z
    [18] LI T, YAO L, LIU Q, et al. Fluorine-free synthesis of high-purity Ti3C2Tx (T=OH, O) via alkali treatment[J]. Angewandte Chemie International Edition,2018,57(21):6115-6119. doi: 10.1002/anie.201800887
    [19] NAGUIB M, PRESSER V, TALLMAN D, et al. On the topotactic transformation of Ti2AlC into a Ti-C-O-F cubic phase by heating in molten lithium fluoride in air[J]. Journal of the American Ceramic Society,2011,94(12):4556-4561. doi: 10.1111/j.1551-2916.2011.04896.x
    [20] XIE J, WANG X, LI A, et al. Corrosion behavior of selected Mn+1AXn phases in hot concentrated HCl solution: Effect of A element and MX layer[J]. Corrosion Science,2012,60:129-135. doi: 10.1016/j.corsci.2012.03.047
    [21] HALIM J, KOTA S, LUKATSKAYA M R, et al. Synthesis and characterization of 2D molybdenum carbide (MXene)[J]. Advanced Functional Materials,2016,26(18):3118-3127. doi: 10.1002/adfm.201505328
    [22] MESHKIAN R, NÅSLUND L Å, HALIM J, et al. Synthesis of two-dimensional molybdenum carbide, Mo2C, from the gallium based atomic laminate Mo2Ga2C[J]. Scripta Materialia,2015,108:147-150. doi: 10.1016/j.scriptamat.2015.07.003
    [23] HALIM J, LUKATSKAYA M R, COOK K M, et al. Transparent conductive two-dimensional titanium carbide epitaxial thin films[J]. Chemistry of Materials,2014,26(7):2374-2381. doi: 10.1021/cm500641a
    [24] GENG D, ZHAO X, CHEN Z, et al. Direct synthesis of largeargetive two-dimein situ grown graphene[J]. Advanced Materials,2017,29(35):1700072. doi: 10.1002/adma.201700072
    [25] LIU Z, XU C, KANG N, et al. Unique domain structure of two-dimensional α-Mo2C superconducting crystals[J]. Nano Letters,2016,16(7):4243-4250. doi: 10.1021/acs.nanolett.6b01265
    [26] HU S, LI S, XU W, et al. Rapid preparation, thermal stability and electromagnetic interference shielding properties of two-dimensional Ti3C2 MXene[J]. Ceramics International,2019,45(16):19902-19909. doi: 10.1016/j.ceramint.2019.06.246
    [27] WU M, WANG B, HU Q, et al. The synthesis process and thermal stability of V2C MXene[J]. Materials,2018,11(11):2112. doi: 10.3390/ma11112112
    [28] GUO Y, JIN S, WANG L, et al. Synthesis of two-dimensional carbide Mo2CTx MXene by hydrothermal etching with fluorides and its thermal stability[J]. Ceramics International,2020,46(11):19550-19556. doi: 10.1016/j.ceramint.2020.05.008
    [29] HIEU V Q, PHUNG T K, NGUYEN T Q, et al. Photocatalytic degradation of methyl orange dye by Ti3C2-TiO2 heterojunction under solar light[J]. Chemosphere,2021,276:130154. doi: 10.1016/j.chemosphere.2021.130154
    [30] XU H, YIN X, LI X, et al. Lightweight Ti2CTx MXene/poly (vinyl alcohol) composite foams for electromagnetic wave shielding with absorption-dominated feature[J]. ACS Applied Materials & Interfaces,2019,11(10):10198-10207.
    [31] HAN R, MA X, XIE Y, et al. Preparation of a new 2D MXene/PES composite membrane with excellent hydrophilicity and high flux[J]. RSC Advances,2017,7(89):56204-56210. doi: 10.1039/C7RA10318B
    [32] CAO Y, DENG Q, LIU Z, et al. Enhanced thermal properties of poly (vinylidene fluoride) composites with ultrathin nanosheets of MXene[J]. RSC Advances,2017,7(33):20494-20501. doi: 10.1039/C7RA00184C
    [33] NAGUIB M, SAITO T, LAI S, et al. Ti3C2Tx (MXene)-polyacrylamide nanocomposite films[J]. RSC Advances,2016,6(76):72069-72073. doi: 10.1039/C6RA10384G
    [34] YU B, TAWIAH B, WANG L Q, et al. Interface decoration of exfoliated MXene ultra-thin nanosheets for fire and smoke suppressions of thermoplastic polyurethane elastomer[J]. Journal of Hazardous Materials,2019,374:110-119. doi: 10.1016/j.jhazmat.2019.04.026
    [35] BOOTA M, PASINI M, GALEOTTI F, et al. Interaction of polar and nonpolar polyfluorenes with layers of two-dimensional titanium carbide (MXene): intercalation and pseudocapacitance[J]. Chemistry of Materials,2017,29(7):2731-2738. doi: 10.1021/acs.chemmater.6b03933
    [36] CHEN K, CHEN Y, DENG Q, et al. Strong and biocompatible poly (lactic acid) membrane enhanced by Ti3C2Tz (MXene) nanosheets for Guided bone regeneration[J]. Materials Letters,2018,229:114-117. doi: 10.1016/j.matlet.2018.06.063
    [37] WU X, HAO L, ZHANG J, et al. Polymer-Ti3C2Tx composite membranes to overcome the trade-off in solvent resistant nanofiltration for alcohol-based system[J]. Journal of Membrane Science,2016,515:175-188. doi: 10.1016/j.memsci.2016.05.048
    [38] LIU Y, ZHANG J, ZHANG X, et al. Ti3C2Tx filler effect on the proton conduction property of polymer electrolyte membrane[J]. ACS Applied Materials & Interfaces,2016,8(31):20352-20363.
    [39] SAJID M, KIM H B, SIDDIQUI G U, et al. Linear bi-layer humidity sensor with tunable response using combinations of molybdenum carbide with polymers[J]. Sensors and Actuators A: Physical,2017,262:68-77. doi: 10.1016/j.sna.2017.05.029
    [40] JIAO S, ZHOU A, WU M, et al. Kirigami patterning of MXene/bacterial cellulose composite paper for all-solid-state stretchable micro-supercapacitor arrays[J]. Advanced Science,2019,6(12):1900529. doi: 10.1002/advs.201900529
    [41] HUANG Z, WANG S, KOTA S, et al. Structure and crystallization behavior of poly (ethylene oxide)/Ti3C2Tx MXene nanocomposites[J]. Polymer,2016,102:119-126. doi: 10.1016/j.polymer.2016.09.011
    [42] MIRKHANI S A, SHAYESTEH ZERAATI A, ALIABADIAN E, et al. High dielectric constant and low dielectric loss via poly (vinyl alcohol)/Ti3C2Tx MXene nanocomposites[J]. ACS Applied Materials& Interfaces,2019,11(20):18599-18608.
    [43] HU C, SHEN F, ZHU D, et al. Characteristics of Ti3C2TX-chitosan films with enhanced mechanical properties[J]. Frontiers in Energy Research,2017,4:41.
    [44] FEI M, LIN R, DENG Y, et al. Polybenzimidazole/Mxene composite membranes for intermediate temperature polymer electrolyte membrane fuel cells[J]. Nanotechnology,2017,29(3):035403.
    [45] SHAO J, WANG J W, LIU D N, et al. A novel high permittivity percolative composite with modified MXene[J]. Polymer,2019,174:86-95. doi: 10.1016/j.polymer.2019.04.057
    [46] CHEN Z, HAN Y, LI T, et al. Preparation and electrochemical performances of doped MXene/poly(3, 4-ethylenedioxythiophene) composites[J]. Materials Letters,2018,220:305-308. doi: 10.1016/j.matlet.2018.03.049
    [47] CAREY M, HINTON Z, SOKOL M, et al. Nylon-6/Ti3C2Tz MXene nanocomposites synthesized by in situ ring opening polymerization of ε-caprolactam and their water transport properties[J]. ACS Applied Materials & Interfaces,2019,11(22):20425-20436.
    [48] ZHANG C, XU S, CAI D, et al. Planar supercapacitor with high areal capacitance based on Ti3C2/polypyrrole composite film[J]. Electrochimica Acta,2020,330:135277. doi: 10.1016/j.electacta.2019.135277
    [49] TONG Y, HE M, ZHOU Y, et al. Hybridizing polypyrrole chains with laminated and two-dimensional Ti3C2Tx toward high-performance electromagnetic wave absorption[J]. Applied Surface Science,2018,434:283-293. doi: 10.1016/j.apsusc.2017.10.140
    [50] WEI H, DONG J, FANG X, et al. Ti3C2Tx MXene/polyaniline (PANI) sandwich intercalation structure composites constructed for microwave absorption[J]. Composites Science and Technology,2019,169:52-59. doi: 10.1016/j.compscitech.2018.10.016
    [51] WU W, WEI D, ZHU J, et al. Enhanced electrochemical performances of organ-like Ti3C2 MXenes/polypyrrole composites as supercapacitors electrode materials[J]. Ceramics International,2019,45(6):7328-7337. doi: 10.1016/j.ceramint.2019.01.016
    [52] BOOTA M, ANASORI B, VOIGT C, et al. Pseudocapacitive electrodes produced by oxidant-free polymerization of pyrrole between the layers of 2D titanium carbide (MXene)[J]. Advanced Materials,2016,28(7):1517-1522. doi: 10.1002/adma.201504705
    [53] ZHANG H, WANG L, CHEN Q, et al. Preparation, mechanical and anti-friction performance of MXene/polymer composites[J]. Materials & Design,2016,92:682-689.
    [54] CAO X, WU M, ZHOU A, et al. Non-isothermal crystallization and thermal degradation kinetics of MXene/linear low-density polyethylene nanocomposites[J]. e-Polymers,2017,17(5):373-381. doi: 10.1515/epoly-2017-0017
    [55] SHENG X, ZHAO Y, ZHANG L, et al. Properties of two-dimensional Ti3C2 MXene/thermoplastic polyurethane nanocomposites with effective reinforcement via melt blending[J]. Composites Science and Technology,2019,181:107710. doi: 10.1016/j.compscitech.2019.107710
    [56] SUN R, ZHANG H B, LIU J, et al. Highly conductive transition metal carbide/carbonitride (MXene)@polystyrene nanocomposites fabricated by electrostatic assembly for highly efficient electromagnetic interference shielding[J]. Advanced Functional Materials,2017,27(45):1702807. doi: 10.1002/adfm.201702807
    [57] KUMAR S, KUMAR P, SINGH N, et al. Steady microwave absorption behavior of two-dimensional metal carbide MXene and Polyaniline composite in X-band[J]. Journal of Magnetism and Magnetic Materials,2019,488:165364. doi: 10.1016/j.jmmm.2019.165364
    [58] LIPTON J, WENG G-M, ALHABEB M, et al. Mechanically strong and electrically conductive multilayer MXene nanocomposites[J]. Nanoscale,2019,11(42):20295-20300. doi: 10.1039/C9NR06015D
    [59] LING Z, REN C E, ZHAO M Q, et al. Flexible and conductive MXene films and nanocomposites with high capacitance[J]. Proceedings of the National Academy of Sciences,2014,111(47):16676-16681. doi: 10.1073/pnas.1414215111
    [60] ZHI W, XIANG S, BIAN R, et al. Study of MXene-filled polyurethane nanocomposites prepared via an emulsion method[J]. Composites Science and Technology,2018,168:404-411. doi: 10.1016/j.compscitech.2018.10.026
    [61] KURTOGLU M, NAGUIB M, GOGOTSI Y, et al. First principles study of two-dimensional early transition metal carbides[J]. MRS Communications,2012,2(4):133-137. doi: 10.1557/mrc.2012.25
    [62] BORYSIUK V N, MOCHALIN V N, GOGOTSI Y. Bending rigidity of two-dimensional titanium carbide (MXene) nanoribbons: A molecular dynamics study[J]. Computational Materials Science,2018,143:418-424. doi: 10.1016/j.commatsci.2017.11.028
    [63] CAO W T, CHEN F F, ZHU Y J, et al. Binary strengthening and toughening of MXene/cellulose nanofiber composite paper with nacre-inspired structure and superior electromagnetic interference shielding properties[J]. ACS Nano,2018,12(5):4583-4593. doi: 10.1021/acsnano.8b00997
    [64] SOBOLČIAK P, ALI A, HASSAN M K, et al. 2D Ti3C2Tx (MXene)-reinforced polyvinyl alcohol (PVA) nanofibers with enhanced mechanical and electrical properties[J]. Plos One,2017,12(8):0183705.
    [65] YAN C, JI C, ZENG X, et al. Interconnecting the promising MXenes via Ag nanowire in epoxy nanocomposites for high-performance thermal management applications[C]. 2018 19th International Conference on Electronic Packaging Technology (ICEPT). IEEE, 2018: 510-512.
    [66] LIU R, LI W. High-thermal-stability and high-thermal-conductivity Ti3C2Tx MXene/poly (vinyl alcohol)(PVA) composites[J]. ACS Omega,2018,3(3):2609-2617. doi: 10.1021/acsomega.7b02001
    [67] KANG R, ZHANG Z, GUO L, et al. Enhanced thermal conductivity of epoxy composites filled with 2D transition metal carbides (MXenes) with ultralow loading[J]. Scientific Reports,2019,9(1):1-14.
    [68] WANG L, SHI B. Hydroxide conduction enhancement of chitosan membranes by functionalized MXene[J]. Materials,2018,11(11):2335. doi: 10.3390/ma11112335
    [69] XUE Y, FENG J, HUO S, et al. Polyphosphoramide-intercalated MXene for simultaneously enhancing thermal stability, flame retardancy and mechanical properties of polylactide[J]. Chemical Engineering Journal,2020,397:125336. doi: 10.1016/j.cej.2020.125336
    [70] YU B, YUEN A C Y, XU X, et al. Engineering MXene surface with POSS for reducing fire hazards of polystyrene with enhanced thermal stability[J]. Journal of Hazardous Materials,2021,401:123342. doi: 10.1016/j.jhazmat.2020.123342
    [71] PAN Y, FU L, ZHOU Q, et al. Flammability, thermal stability and mechanical properties of polyvinyl alcohol nanocomposites reinforced with delaminated Ti3C2Tx (MXene)[J]. Polymer Composites,2020,41(1):210-218. doi: 10.1002/pc.25361
    [72] YI S, LI J, LIU Y, et al. In-situ formation of tribofilm with Ti3C2Tx MXene nanoflakes triggers macroscale superlubricity[J]. Tribology International,2021,154:106695. doi: 10.1016/j.triboint.2020.106695
    [73] WYATT B C, ROSENKRANZ A, ANASORI B. 2D MXenes: Tunable mechanical and tribological properties[J]. Advanced Materials,2021,33(17):2007973. doi: 10.1002/adma.202007973
    [74] YAN H, ZHANG L, LI H, et al. Towards high-performance additive of Ti3C2/graphene hybrid with a novel wrapping structure in epoxy coating[J]. Carbon,2020,157:217-233. doi: 10.1016/j.carbon.2019.10.034
    [75] ZHANG H, WANG L, ZHOU A, et al. Effects of 2-D transition metal carbide Ti2CTx on properties of epoxy compo-sites[J]. RSC Advances,2016,6(90):87341-87352. doi: 10.1039/C6RA14560D
    [76] GUO L, ZHANG Y, ZHANG G, et al. MXene-Al2O3 synergize to reduce friction and wear on epoxy-steel contacts lubricated with ultra-low sulfur diesel[J]. Tribology International,2021,153:106588. doi: 10.1016/j.triboint.2020.106588
    [77] MENG F, ZHANG Z, GAO P, et al. Excellent tribological properties of epoxy-Ti3C2 with three-dimensional nanosheets composites[J]. Friction,2021,9(4):734-746. doi: 10.1007/s40544-020-0368-1
    [78] 康瑞洋, 张振宇, 郭梁超, 等. Ti3C2MXene填充环氧树脂复合材料摩擦学性能研究[J]. 硬质合金, 2019, 36(3):213-220.

    KANG R Y, ZHANG Z Y, GUO L C, et al. Study on the tribological property of epoxy composites filled with Ti3C2 MXene[J]. Cemented Carbide,2019,36(3):213-220(in Chinese).
    [79] SONG P, LIU B, QIU H, et al. MXenes for polymer matrix electromagnetic interference shielding composites: A review[J]. Composites Communications,2021,24:100653.
    [80] HE P, CAO M S, CAI Y Z, et al. Self-assembling flexible 2D carbide MXene film with tunable integrated electron migration and group relaxation toward energy storage and green EMI shielding[J]. Carbon,2020,157:80-89. doi: 10.1016/j.carbon.2019.10.009
    [81] WANG L, CHEN L, SONG P, et al. Fabrication on the annealed Ti3C2Tx MXene/epoxy nanocomposites for electromagnetic interference shielding application[J]. Compo-sites Part B:Engineering,2019,171:111-118. doi: 10.1016/j.compositesb.2019.04.050
    [82] XIE F, JIA F, ZHUO L, et al. Ultrathin MXene/aramid nano-fiber composite paper with excellent mechanical properties for efficient electromagnetic interference shielding[J]. Nanoscale,2019,11(48):23382-23391. doi: 10.1039/C9NR07331K
    [83] WAN Y, XIONG P, LIU J, et al. Ultrathin, strong, and highly flexible Ti3C2Tx MXene/bacterial cellulose composite films for high-performance electromagnetic interference shielding[J]. ACS Nano,2021,15(5):8439-8449. doi: 10.1021/acsnano.0c10666
    [84] MAYERBERGER E A, STREET R M, MCDANIEL R M, et al. Antibacterial properties of electrospun Ti3C2Tz (MXene)/chitosan nanofibers[J]. RSC Advances,2018,8(62):35386-35394. doi: 10.1039/C8RA06274A
    [85] GAO X, LI Z K, XUE J, et al. Titanium carbide Ti3C2Tx (MXene) enhanced PAN nanofiber membrane for air purification[J]. Journal of Membrane Science,2019,586:162-169. doi: 10.1016/j.memsci.2019.05.058
    [86] SHAO W, TEBYETEKERWA M, MARRIAM I, et al. Polyester@MXene nanofibers-based yarn electrodes[J]. Journal of Power Sources,2018,396:683-690. doi: 10.1016/j.jpowsour.2018.06.084
    [87] YIN J, ZHAN F, JIAO T, et al. Highly efficient catalytic performances of nitro compounds via hierarchical PdNPs-loaded MXene/polymer nanocomposites synthesized through electrospinning strategy for wastewater treatment[J]. Chinese Chemical Letters,2020,31(4):992-995. doi: 10.1016/j.cclet.2019.08.047
  • 加载中
图(8)
计量
  • 文章访问数:  2651
  • HTML全文浏览量:  1117
  • PDF下载量:  289
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-21
  • 修回日期:  2021-08-14
  • 录用日期:  2021-08-17
  • 网络出版日期:  2021-08-30
  • 刊出日期:  2022-04-01

目录

    /

    返回文章
    返回