留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光固化3D打印改性碳纤维/光敏树脂复合材料的制备与性能调控

王世崇 陈彦羽 侯阳 邓浩宇 刘晓暄 向洪平 彭忠泉 容敏智 章明秋

王世崇, 陈彦羽, 侯阳, 等. 光固化3D打印改性碳纤维/光敏树脂复合材料的制备与性能调控[J]. 复合材料学报, 2022, 39(10): 4509-4517. doi: 10.13801/j.cnki.fhclxb.20211109.001
引用本文: 王世崇, 陈彦羽, 侯阳, 等. 光固化3D打印改性碳纤维/光敏树脂复合材料的制备与性能调控[J]. 复合材料学报, 2022, 39(10): 4509-4517. doi: 10.13801/j.cnki.fhclxb.20211109.001
WANG Shichong, CHEN Yanyu, HOU Yang, et al. Preparation and property regulation of modified carbon fiber/photosensitive resin composite for UV-curing 3D printing[J]. Acta Materiae Compositae Sinica, 2022, 39(10): 4509-4517. doi: 10.13801/j.cnki.fhclxb.20211109.001
Citation: WANG Shichong, CHEN Yanyu, HOU Yang, et al. Preparation and property regulation of modified carbon fiber/photosensitive resin composite for UV-curing 3D printing[J]. Acta Materiae Compositae Sinica, 2022, 39(10): 4509-4517. doi: 10.13801/j.cnki.fhclxb.20211109.001

光固化3D打印改性碳纤维/光敏树脂复合材料的制备与性能调控

doi: 10.13801/j.cnki.fhclxb.20211109.001
基金项目: 国家自然科学基金 (51873043;21604014)
详细信息
    通讯作者:

    向洪平,博士,副教授,硕士生导师,研究方向为功能高分子材料 E-mail: xianghongping@gdut.edu.cn

  • 中图分类号: TB332

Preparation and property regulation of modified carbon fiber/photosensitive resin composite for UV-curing 3D printing

  • 摘要: 光固化3D打印技术因成型速度快、器件精度高、表面质量好,已成为3D打印快速制备高精尖器件的首选方法,但现有3D打印光敏树脂仍存在器件力学强度低、韧性差等问题。碳纤维因导电、导热、高比强度、高比模量等特性,已被广泛应用于各种结构或功能复合材料。为此,先采用化学氧化、硅烷偶联剂(KH580)改性等手段对短切碳纤维进行表面改性得到KH580改性碳纤维(MCF);再将MCF与3D打印光敏树脂(PR)复合得到改性碳纤维/光敏树脂(MCF/PR)复合材料,并对其光固化动力学和3D打印器件的力学性能进行了详细研究。结果表明:当MCF表面的KH580接枝量为0.5wt%、MCF添加量为0.15wt%时,虽然MCF与PR复合后使光敏树脂的黏度有所增大,但对光敏树脂的固化深度与临界曝光量影响较小,仍能满足光固化3D打印要求;利用立体光刻技术(Stereolithography,SLA)光固化3D打印工艺能很好地制造出各种MCF/PR器件,器件的拉伸强度可达70 MPa,与纯PR相比增加了约100%,冲击强度为1.91 kJ/m2,较PR提高了约60%,且3D打印器件在350℃下具有良好的热稳定性。

     

  • 图  1  KH580改性碳纤维(MCF)与3D打印制品示意图

    Figure  1.  Schematic diagram of KH580 modified carbon fiber (MCF) and 3D printed samples

    图  2  碳纤维(CF)、未接枝前的氧化碳纤维(OCF)与MCF的FTIR图谱 (a)、热重分析曲线 (b) 和SEM图像 (c)

    Figure  2.  FTIR spectra (a), TGA curves (b) and SEM images (c) of carbon fiber (CF), oxidized carbon fiber before grafting (OCF) and MCF

    0.5MCF and 1.5MCF—KH580 content grafted on MCF surfacefor 0.5wt% and 1.5wt%

    图  3  1.5MCF (a) 和0.5MCF (b) 的质量分数对MCF/光敏树脂(PR)黏度的影响

    Figure  3.  Effects of mass fraction of 1.5MCF (a) and 0.5MCF (b) on the viscosity of MCF/photosensitive resin (PR)

    图  4  0.5MCF-0.15wt%的辐照强度(a)和MCF用量(b)对MCF/PR复合树脂光固化反应转化率的影响

    Figure  4.  Effects of irradiation intensity with 0.5MCF-0.15wt% (a) and dosage of MCF (b) on the conversion of photocuring reaction of MCF/PR

    图  5  MCF/PR与PR的固化深度与临界曝光量

    Figure  5.  Cure depth and critical exposure energy of MCF/PR and PR

    Cd—Transmission depth; E0—Incident exposure energy

    图  6  不同改性条件的CF对MCF/PR复合材料拉伸强度的影响:(a) OCF;(b) 0.5MCF;(c) 1.5MCF

    Figure  6.  Effects of CF on tensile strength of MCF/PR composites under different modification conditions: (a) OCF; (b) 0.5MCF; (c) 1.5MCF

    图  7  不同改性条件CF质量分数的MCF/PR复合材料的冲击强度

    Figure  7.  Impact strength of MCF/PR composites with different CF mass fraction under different modification conditions

    图  8  PR (a)、MCF/PR复合材料(b)、未改性碳纤维填充光敏树脂(c)的SEM图像

    Figure  8.  SEM images of PR (a), MCF/PR composite (b), photosensitive resin filled with unmodified carbon fiber (c)

    图  9  0.1wt%改性CF的MCF/PR复合材料的热重分析曲线

    Figure  9.  TGA curves of MCF/PR composites including CF with 0.1wt% grafted amount of KH580

    图  10  MCF/PR复合材料3D打印成品

    Figure  10.  3D printed MCF/PR composite products

  • [1] NGO T D, KASHANI A, LMBALZANO G, et al. Additive manufacturing (3D printing): A review of materials, methods, applications and challenges[J]. Composites Part B: Engineering,2018,143:172-196. doi: 10.1016/j.compositesb.2018.02.012
    [2] XIANG H P, WANG X W, OU Z R, et al. UV-curable, 3D printable and biocompatible silicone elastomers[J]. Progress in Organic Coatings,2019,137:105372. doi: 10.1016/j.porgcoat.2019.105372
    [3] LIU Z, HONG P, HUANG Z Y, et al. Self-healing, reprocessing and 3D printing of transparent and hydrolysis resistant silicone elastomers[J]. Chemical Engineering Journal,2020,387:124142. doi: 10.1016/j.cej.2020.124142
    [4] STANSBURY J W, IDACAVAGE M J. 3D printing with polymers: Challenges among expanding options and opportunities[J]. Dental Materials,2016,32(1):54-64. doi: 10.1016/j.dental.2015.09.018
    [5] LIGON S C, LISKA R, STAMPFL J, et al. Polymers for 3D printing and customized additive manufacturing[J]. Chemical Review,2017,117(15):10212-10290. doi: 10.1021/acs.chemrev.7b00074
    [6] QUAN H Y, ZHANG T, XU H, et al. Photo-curing 3D printing technique and its challenges[J]. Bioactive Materials,2020,5(1):110-115. doi: 10.1016/j.bioactmat.2019.12.003
    [7] SIVADAS B O, ASHCROFT I, KHLOBYSTOV A N, et al. Laser sintering of polymer nanocomposites[J]. Advanced Industrial and Engineering Polymer Research,2021,4(4):277-300. doi: 10.1016/j.aiepr.2021.07.003
    [8] ZHANG J, XIAO P. 3D printing of photopolymers[J]. Polymer Chemistry,2018,9(13):1530-1540. doi: 10.1039/C8PY00157J
    [9] ZHANG X Q, XU Y, LI L, et al. Acrylate-based photosensitive resin for stereolithographic three-dimensional printing[J]. Journal of Applied Polymer Science,2019,136(21):47487. doi: 10.1002/app.47487
    [10] 王世崇, 朱雨薇, 吴瑶, 等. 光固化3D打印技术及光敏树脂的开发与应用[J]. 功能高分子学报, 2022, 35(1): 19-35.

    WANG Shichong, ZHU Yuwei, WU Yao, et al. Development and applications of UV-curing 3D printing and photosensitive resin[J]. Journal of Functional Polymers, 2022, 35(1): 19-35.
    [11] LIGON-AUER S C, SCHWENTENWEIN M, GORSCHE C, et al. Toughening of photo-curable polymer networks: A review[J]. Polymer Chemistry,2016,7(2):257-286. doi: 10.1039/C5PY01631B
    [12] 宗学文, 周升栋, 刘洁, 等. 光固化3D打印及光敏树脂改性研究进展[J]. 塑料工业, 2020, 48(1):12-17. doi: 10.3969/j.issn.1005-5770.2020.01.003

    ZONG Xuewen, ZHOU Shengdong, LIU Jie, et al. Research progress in photo-curing 3D printing and photosensitive resin modification[J]. China Plastics Industry,2020,48(1):12-17(in Chinese). doi: 10.3969/j.issn.1005-5770.2020.01.003
    [13] 姜丹丹. 光固化3DP材料的增韧改性及其收缩性能研究[D]. 南京: 南京航空航天大学, 2016.

    JIANG Dandan. Study on toughening modification and shrinkage property of UV-curing 3DP materials[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2016(in Chinese).
    [14] ZHANG T T, ZHOU M X, GUO Z Y, et al. Improving impact toughness of polylactide/ethylene-co-vinyl-acetate blends via adding fumed silica nanoparticles: Effects of specific surface area-dependent interfacial selective distribution of silica[J]. Chinese Journal of Polymer Science,2021,39:1040-1049. doi: 10.1007/s10118-021-2565-4
    [15] SPRENGER S, KOTHMANN M H, ALTSTAEDT V. Carbon fiber-reinforced composites using an epoxy resin matrix modified with reactive liquid rubber and silica nanoparticles[J]. Composites Science and Technology,2014,105:86-95. doi: 10.1016/j.compscitech.2014.10.003
    [16] POURRAHMANI H, GOLPARVAR M, FASIHI M. A new evaluation criterion for optimizing the mechanical properties of toughened polypropylene/silica nanocomposites[J]. Chinese Journal of Polymer Science,2020,38:877-887. doi: 10.1007/s10118-020-2399-5
    [17] LIU Y, LIN Y C, JIAO T, et al. Photocurable modification of inorganic fillers and their application in photopolymers for 3D printing[J]. Polymer Chemistry,2019,10(46):6324-6333. doi: 10.1039/C9PY01411J
    [18] MUBARAK S, DHAMODHARAN D, KALE M B, et al. A novel approach to enhance mechanical and thermal pro-perties of SLA 3D printed structure by incorporation of metal-metal oxide nanoparticles[J]. Nanomaterials,2020,10(2):217. doi: 10.3390/nano10020217
    [19] LI Y W, PENG S Q, MIAO J T, et al. Isotropic stereolithography resin toughened by core-shell particles[J]. Chemical Engineering Journal,2020,394:124873. doi: 10.1016/j.cej.2020.124873
    [20] WENG Z X, ZHOU Y, LIN W X, et al. Structure-property relationship of nano enhanced stereolithography resin for desktop SLA 3D printer[J]. Composites Part A: Applied Science and Manufacturing,2016,88:234-242. doi: 10.1016/j.compositesa.2016.05.035
    [21] AEGERTER N, VOLK M, MAIO C, et al. Pultrusion of hybrid bicomponent fibers for 3D printing of continuous fiber reinforced thermoplastics[J]. Advanced Industrial and Engineering Polymer Research,2021,4(4):224-234. doi: 10.1016/j.aiepr.2021.07.004
    [22] 王鹤. 短碳纤维增强3D打印用光敏树脂及力学性能分析[J]. 中国胶粘剂, 2018, 27(8):24-27.

    WANG He. Mechanical properties analysis and synthesis of short carbon fiber reinforced 3D printing photosensitive resin[J]. China Adhesives,2018,27(8):24-27(in Chinese).
    [23] SANO Y, MATSUZAKI R, UEDA M. 3D printing of discontinuous and continuous fibre composites using stereolithography[J]. Additive Manufacturing,2018,24:521-527. doi: 10.1016/j.addma.2018.10.033
    [24] 刘刚, 胡晓兰, 张朋, 等. 碳纳米管膜层间改性碳纤维/环氧树脂复合材料[J]. 高分子学报, 2013(10):1334-1340.

    LIU Gang, HU Xiaolan, ZHANG Peng, et al. Carbon nanotube film interlayer toughened carbon fiber reinforced epoxy resin hybrid composites[J]. Acta Polymerica Sinica,2013(10):1334-1340(in Chinese).
    [25] 中国国家标准化管理委员会. 塑料 拉伸性能的测定 第1部分: 总则: GB/T 1040.1—2018[S]. 北京: 中国标准出版社, 2018.

    Standardization Administration of the People’s Republic of China. Plastics—Determination of tensile properties—Part 1: General principles: GB/T 1040.1—2018[S]. Beijing: China Standards Press, 2018(in Chinese).
    [26] 中国国家标准化管理委员会. 塑料 薄膜和薄片耐撕裂性能的测定 第1部分: 裤形撕裂法: GB/T 16578.1—2008[S]. 北京: 中国标准出版社, 2008.

    Standardization Administration of the People’s Republic of China. Plastics—Film and sheeting—Determination of tear resistance—Part 1: Trouser tear method: GB/T 16578.1—2008[S]. Beijing: China Standards Press, 2008(in Chinese).
    [27] 中国国家标准化管理委员会. 塑料 悬臂梁冲击强度的测定: GB/T 1843—2008[S]. 北京: 中国标准出版社, 2008.

    Standardization Administration of the People’s Republic of China. Plastics—Determination of izod impact strength: GB/T 1843-2008[S]. Beijing: China Standards Press, 2008(in Chinese).
    [28] 白云, 李琴梅, 刘奕忍, 等. 石墨烯材料表面含氧官能团的表征研究[J]. 分析仪器, 2020(4):83-88. doi: 10.3969/j.issn.1001-232x.2020.04.017

    BAI Yun, LI Qinmei, LIU Yiren, et al. Analysis of oxygen-containing functional groups on the surface of graphene material[J]. Analytical Instrumentation,2020(4):83-88(in Chinese). doi: 10.3969/j.issn.1001-232x.2020.04.017
    [29] 杜慷慨, 林志勇. 碳纤维表面氧化的研究[J]. 华侨大学学报, 1999, 20(2):136-141.

    DU Kangkai, LIN Zhiyong. Oxidation on the surface of carbon fibers[J]. Journal of Huaqiao University,1999,20(2):136-141(in Chinese).
    [30] 林广鸿, 尹敬峰, 黄鸿, 等. 混杂光固化3D打印树脂固化动力学性能[J]. 材料工程, 2019, 47(12):143-150. doi: 10.11868/j.issn.1001-4381.2018.000667

    LIN Guanghong, YIN Jingfeng, HUANG Hong, et al. Photocuring kinetics properties of hybrid UV-curing resin for 3D printing[J]. Journal of Materials Engineering,2019,47(12):143-150(in Chinese). doi: 10.11868/j.issn.1001-4381.2018.000667
    [31] HUANG B W, HAN L L, WU B L. Synthesis of diepoxycyclohexylethyl tetramethyldisiloxane and its application to stereolithography 3D printing[J]. Rapid Prototyping Journal, 2020, 26(9): 1515-1524.
    [32] KOUSHKI P, KWOK T, HOF L, et al. Reinforcing silicone with hemp fiber for additive manufacturing[J]. Composites Science and Technology,2020,194:108139. doi: 10.1016/j.compscitech.2020.108139
    [33] LIN G H, YIN J F, LIN Z Q, et al. Facile thiol-epoxy click chemistry for transparent and aging-resistant silicone/epoxy composite as LED encapsulant[J]. Progress in Organic Coatings,2021,156:106269. doi: 10.1016/j.porgcoat.2021.106269
  • 加载中
图(10)
计量
  • 文章访问数:  1449
  • HTML全文浏览量:  527
  • PDF下载量:  139
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-10
  • 修回日期:  2021-11-03
  • 录用日期:  2021-11-04
  • 网络出版日期:  2021-11-10
  • 刊出日期:  2022-08-22

目录

    /

    返回文章
    返回