留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

杜仲橡胶-丁苯橡胶复合体系的共硫化探究及其动静态力学性能

邓琳僡 殷德贤 向万坤 孙泉 丁晓冬 赵秀英

邓琳僡, 殷德贤, 向万坤, 等. 杜仲橡胶-丁苯橡胶复合体系的共硫化探究及其动静态力学性能[J]. 复合材料学报, 2022, 39(0): 1-9
引用本文: 邓琳僡, 殷德贤, 向万坤, 等. 杜仲橡胶-丁苯橡胶复合体系的共硫化探究及其动静态力学性能[J]. 复合材料学报, 2022, 39(0): 1-9
Linhui DENG, Dexian YIN, Wankun XIANG, Quan SUN, Xiaodong DING, Xiuying ZHAO. Co-vulcanization of eucommia ulmoides gum-styrene butadiene rubber composite system and its dynamic and static mechanical properties[J]. Acta Materiae Compositae Sinica.
Citation: Linhui DENG, Dexian YIN, Wankun XIANG, Quan SUN, Xiaodong DING, Xiuying ZHAO. Co-vulcanization of eucommia ulmoides gum-styrene butadiene rubber composite system and its dynamic and static mechanical properties[J]. Acta Materiae Compositae Sinica.

杜仲橡胶-丁苯橡胶复合体系的共硫化探究及其动静态力学性能

基金项目: 国家重点研发计划项目(2017YFB0306904)
详细信息
    通讯作者:

    赵秀英,博士,教授,研究方向为弹性体材料科学与工程 E-mail: zhaoxy@mail.buct.edu.cn

  • 中图分类号: TB332

Co-vulcanization of eucommia ulmoides gum-styrene butadiene rubber composite system and its dynamic and static mechanical properties

  • 摘要: 将杜仲橡胶(EUG)与丁苯橡胶(SBR)共混制备了EUG-SBR橡胶复合材料。通过剥离实验和拉伸实验表征其共硫化的情况;通过拉伸实验,SEM、DMA和XRD研究了EUG含量对复合材料动静态性能的影响。结果表明,硫化体系:促进剂DZ 1.0份、促进剂TMTD 0.1份、硫磺1.5份可以使两种橡胶达到更好的共硫化,剥离强度达到4.2 kN/m,EUG-SBR(EUG/SBR质量比为70/30)复合材料的拉伸强度达到6.3 MPa。复合材料中的EUG晶区主要以β晶型存在,随着EUG含量增多,复合材料的结晶度和熔融温度明显提高。EUG相的引入会使复合材料的损耗因子峰值tanδmax下降,同时大幅提高复合材料的储能模量,在10 ℃时EUG-SBR复合材料的储能模量会从5份EUG时的3.0×106 Pa提高到35份EUG时的1.7×107 Pa。同时晶区的存在起到物理交联点的作用,提升复合材料的拉伸强度和定伸应力。

     

  • 图  1  不同配方EUG-SBR复合材料的硫化曲线

    Figure  1.  Vulcanization curves of different formula EUG-SBR composites

    图  2  不同配方EUG-SBR复合材料的剥离力-位移曲线

    Figure  2.  Peeling force-displacement curves of different formula EUG-SBR composites

    图  3  不同配方EUG-SBR复合材料的应力-应变曲线

    Figure  3.  Stress-strain curves of different formula EUG-SBR composites

    图  4  EUG-SBR复合材料的AFM对数模量图

    Figure  4.  AFM logarithmic modulus of EUG-SBR composites ((a), (b), (c) and (d) represent the EUG-SBR mass ratios of 5/95, 15/85, 25/75, 35/65)

    图  5  EUG-SBR复合材料的DSC曲线

    Figure  5.  DSC curves of EUG-SBR composites

    图  6  EUG-SBR复合材料的XRD曲线

    Figure  6.  XRD curves of EUG-SBR composites

    图  7  EUG-SBR复合材料的DMA图谱:(a)储能模量-温度曲线;(b)损耗因子-温度曲线

    Figure  7.  DMA spectrum of EUG-SBR composites: (a) Storage modulus-temperature curves; (b) Loss factor-temperature curves

    图  8  EUG-SBR复合材料应力-应变曲线

    Figure  8.  Stress-strain curves of EUG-SBR composite materials

    表  1  杜仲橡胶-丁苯橡胶(EUG-SBR)共硫化研究用配方 wt%

    Table  1.   Formulations for eucommia ulmoides gum-styrene butadiene rubber (EUG-SBR) co-vulcanization research wt%

    FormulationFormulation 1Formulation 2Formulation 3
    Raw rubber100100100
    Zinc oxide (ZnO)444
    Stearic acid (SA)111
    Accelerator CZ0.8----
    Accelerator DZ--1--
    Accelerator NS----1
    Accelerator TMTD--0.1--
    Insoluble sulfur (S)1.81.51.5
    Notes: CZ—N-cyclohexyl-2-benzothiazole sulfonamide; DZ—N, N-dicyclohexyl-2-benzothiazole sulfonamide; NS—N-tert-butyl-2-benzothiazole sulfonamide; TMTD—Tetramethylthiuram disulfide.
    下载: 导出CSV

    表  2  不同配方EUG-SBR复合材料的剥离强度

    Table  2.   Stripping strength of various EUG-SBR composite materials of different formulations

    FormulationFormulation 1Formulation 2Formulation 3
    Average peel force/N4110457
    Peel strength/(kN·m−1)1.64.22.3
    下载: 导出CSV

    表  3  不同配方EUG-SBR复合材料的力学性能

    Table  3.   Mechanical properties of various EUG-SBR composite materials of different formulations

    FormulationTensile strength/MPaElongation at break/%Stress at 100%/MPaStress at 300%/MPaHardness (Shore A)
    Formulation 12.93831.32.051
    Formulation 26.24161.73.260
    Formulation 35.14291.62.858
    下载: 导出CSV

    表  4  EUG-SBR复合材料的结晶度Xc

    Table  4.   Crystallinity Xc of EUG-SBR composites

    EUG/SBR mass ratio0/1005/9515/8525/7535/65100/0
    Xc /%001.435.337.4931.12
    下载: 导出CSV

    表  5  不同EUG含量 EUG-SBR复合材料力学性能

    Table  5.   Mechanical properties of EUG-SBR composite materials with different EUG contents

    EUG/SBR
    mass ratio
    Tensile strength/MPaElongation at break/%Stress at 100%/MPaStress at 300%/MPaHardness( Shore A)
    0/1002.24130.91.541
    5/952.23890.91.542
    15/852.64081.01.644
    25/755.24641.42.354
    35/659.14801.83.361
    下载: 导出CSV
  • [1] 张聪, 胡昌飞, 林新志. SSBR分子结构对硫化胶阻尼性能的影响[J]. 材料开发与应用, 2019, 34(2):63-69.

    ZHANG Cong, HU Changfei, LIN Xinzhi. Effect of molecular structure on damping properties of solution-polymerized styrene-butadiene vulcanized rubber[J]. Development and Application of Materials,2019,34(2):63-69(in Chinese).
    [2] FU Yifeng, KABIR I. Inrana, YEOH Guanheng, et al. A review on polymer-based materials for underwater sound absorption[J]. Polymer Testing,2021,96:107115. doi: 10.1016/j.polymertesting.2021.107115
    [3] 耿晓燕, 郭大通, 赵德涛, 等. 滑动接枝共聚物/丁腈橡胶复合材料及其阻尼性能[J]. 复合材料学报, 2016, 33(7):1454-1460.

    GENG Xiaoyan, GUO Datong, ZHAO Detao, et al. Sliding graft copolymer/nitrile butadiene rubber composites and its damping property[J]. Acta Materiae Compositae Sinica,2016,33(7):1454-1460(in Chinese).
    [4] 向平, 李豪祥, 宋昊, 等. 压力与温度对炭黑填充丁苯橡胶复合材料动静态性质影响的分子模拟[J]. 高分子材料科学与工程, 2021, 37(3):93-99+105.

    XIANG Ping, LI Haoxiang, SONG Hao, et al. Molecular simulation of the influence of pressure and temperature on the dynamic and static properties of carbon black filled styrene butadiene rubber composites[J]. Polymer Materials Science & Engineering,2021,37(3):93-99+105(in Chinese).
    [5] 王兵, 任伟伟, 王雯霏. 静压力下粘弹性阻尼材料自由体积分数的分子模拟研究[J]. 材料开发与应用, 2016, 31(6):1-5.

    WANG Bing, REN Weiwei, WANG Wenfei. Molecular simulation analysis for the influence of hydrostatic pressure on the free volume fraction of viscoelastic damping materials[J]. Development and Application of Materials,2016,31(6):1-5(in Chinese).
    [6] 浦文婧, 李效东, 王清华. 高分子吸声材料吸声性能与粘弹性之间的关系[J]. 高分子材料科学与工程, 2011, 27(12):86-89.

    PU Wenjing, LI Xiaodong, WANG Qinghua. Relationship between acoustical absorptivity and viscoelasticity of acoustical absorptive polymer[J]. Polymer Materials Science & Engineering,2011,27(12):86-89(in Chinese).
    [7] WEI Xingneng, PENG Pai, PENG Feng, et al. Natural polymer eucommia ulmoides rubber: a novel material[J]. Journal of agricultural and food chemistry,2021,69(13):3797-3821. doi: 10.1021/acs.jafc.0c07560
    [8] 董宇航, 赵喜源, 曹仁伟, 等. 天然杜仲胶的提取技术和应用研究现状[J]. 弹性体, 2020, 30(1):68-74. doi: 10.3969/j.issn.1005-3174.2020.01.015

    DONG Yuhang, ZHAO Xiyuan, CAO Renwei, et al. Research status of extraction technology and application of eucommia ulmoides gum[J]. China Elastomerics,2020,30(1):68-74(in Chinese). doi: 10.3969/j.issn.1005-3174.2020.01.015
    [9] HE Xirui, WANG Jinhui, LI Maoxing, et al. Eucommia ulmoides Oliv. : Ethnopharmacology, phytochemistry and pharmacology of an important traditional Chinese medicine[J]. Journal of Ethnopharmacology,2014,152(1):14-32. doi: 10.1016/j.jep.2013.12.052
    [10] 李春霞, 辛振祥, 夏琳. 天然杜仲橡胶在橡塑方面的研究进展[J]. 特种橡胶制品, 2014, 35(1):78-80.

    LI Chunxia, XIN Zhenxiang, XIA Lin. Research progress of natural eucommia rubber in rubber and plastics[J]. Special Purpose Rubber Products,2014,35(1):78-80(in Chinese).
    [11] 张继川, 薛兆弘, 严瑞芳, 等. 天然高分子材料——杜仲胶的研究进展[J]. 高分子学报, 2011(10):1105-1117.

    ZHANG Jichuan, XUE Zhaohong, YAN Ruifang, et al. Natural polymer material-recent studies on eucommia ulmoides fum[J]. Acta Polymerica Sinica,2011(10):1105-1117(in Chinese).
    [12] DONG Menjie, ZHANG Tianxing, ZHANG Jichuan, et al. Mechanism analysis of Eucommia ulmoides gum reducing the rolling resistance and the application study in green tires[J]. Polymer Testing,2020,87(8):106539.
    [13] CAO Renwei, DENG Linhui, FENG Zhibo, et al. Preparation of natural bio-based Eucommia ulmoides gum/styrene-butadiene rubber composites and the evaluation of their damping and sound absorption properties[J]. Polymer,2021,213:123292. doi: 10.1016/j.polymer.2020.123292
    [14] GEORGE Soney C, NINAN K N, GROENINCKX Gabriel, et al. Styrene-butadiene rubber/natural rubber blends: morphology, transport behavior, and dynamic mechanical and mechanical properties[J]. Journal of Applied Polymer Science,2015,78(6):1280-1303.
    [15] 郭建华, 曾幸荣, 罗权焜. 橡胶阻尼减震材料的研究进展[J]. 特种橡胶制品, 2012, 033(6):68-73.

    GUO Jianhua, ZENG Xinrong, LUO Quankun. Research progress of rubber damping materials[J]. Special Purpose Rubber Products,2012,033(6):68-73(in Chinese).
    [16] LI Ying, XU Fan, LIN Zaishan, et al. Electrically and thermally conductive underwater acoustically absorptive graphene/rubber nanocomposites for multifunctional applications[J]. Nanoscale,2017,9:14476-14485. doi: 10.1039/C7NR05189A
    [17] ZHANG Jichuan, XUE Zhaohong, Yan Ruifang. Damping performance of eucommia ulmoides gum[J]. Chinese Journal of Polymer Science,2011,29(2):157-163. doi: 10.1007/s10118-010-1008-4
    [18] 罗权焜, 郭建华. 共混橡胶的共硫化研究[J]. 特种橡胶制品, 2011, 32(5):1-7. doi: 10.3969/j.issn.1005-4030.2011.05.001

    LUO Quankun, GUO Jianhua. Study on co-vulcanization of blend rubber[J]. Special Purpose Rubber Products,2011,32(5):1-7(in Chinese). doi: 10.3969/j.issn.1005-4030.2011.05.001
    [19] 中国国家标准化管理委员会. 胶粘剂T剥离强度试验方法 挠性材料对挠性材料: GB/T 2791—1995[S]. 北京: 中国标准出版社, 1995.

    Standardization Administration of the People's Republic of China. Adhesive T peel strength test method Flexible material with flexible material: GB/T 2791—1995[S]. Beijing: China Standards Press, 1995(in chinese).
    [20] 中国国家标准化管理委员会. 硫化橡胶或热塑性橡胶拉伸应力应变性能的测定: GB/T 528—2009[S]. 北京: 中国标准出版社, 2009.

    Standardization Administration of the People's Republic of China. Determination of tensile stress-strain properties of vulcanized rubber or thermoplastic rubber: GB/T 528—2009[S]. Beijing: China Standards Press, 2009(in chinese).
    [21] 中国国家标准化管理委员会. 硫化橡胶或热塑性橡胶压入硬度试验方法 第1部分: 邵氏硬度计法(邵尔硬度): GB/T 531.1—2008[S]. 北京: 中国标准出版社, 2008.

    Standardization Administration of the People's Republic of China. Vulcanized rubber or thermoplastic rubber indentation hardness test method Part 1: GB/T 531.1—2008[S]. Beijing: China Standards Press, 2008(in chinese).
    [22] 王振华. 橡胶纳米增强机理及新型增强导热复合材料的制备、结构与性能研究 [D]. 北京化工大学, 2010.

    WANG Zhenhua. Nano-reinforcement mechanism of rubber and preparation, structure and performance of new reinforced thermally conductive composite materials [D]. Beijing University of Chemical Technology, 2010(in chinese).
    [23] YAO Kuncheng, NIE Huarong, LIANG Yongri, et al. Polymorphic crystallization behaviors in cis-1, 4-polyisoprene/trans-1, 4-polyisoprene blends[J]. Polymer,2015,80:259-264. doi: 10.1016/j.polymer.2015.10.063
    [24] RATRI Paramitajaya, TASHIRO Kohji, IGUCHI Masatoshi. Experimentally-and theoretically-evaluated ultimate 3-dimensional elastic constants of trans-1, 4-polyisoprene α and β crystalline forms on the basis of the newly-refined crystal structure information[J]. Polymer,2012,53(16):3548-3558. doi: 10.1016/j.polymer.2012.06.003
    [25] ZHANG Jichuan, XUE Zhaohong. A comparative study on the properties of Eucommia ulmoides gum and synthetic trans-1, 4-polyisoprene[J]. Polymer Testing,2011,30(7):753-759. doi: 10.1016/j.polymertesting.2011.06.010
    [26] WU Yingfei, YAO Kuncheng, NIE Huarong, et al. Confirmation on the compatibility between cis-1, 4-polyisoprene and trans-1, 4-polyisoprene[J]. Polymer,2018,153:271-276. doi: 10.1016/j.polymer.2018.08.031
  • 加载中
计量
  • 文章访问数:  117
  • HTML全文浏览量:  109
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-02
  • 录用日期:  2021-12-19
  • 修回日期:  2021-12-14
  • 网络出版日期:  2022-01-22

目录

    /

    返回文章
    返回