留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

NiTip/5052 Al复合材料的制备及其阻尼行为

伍潇 江鸿杰 成忠序 刘崇宇 刘淑辉

伍潇, 江鸿杰, 成忠序, 等. NiTip/5052 Al复合材料的制备及其阻尼行为[J]. 复合材料学报, 2023, 40(8): 4821-4830. doi: 10.13801/j.cnki.fhclxb.20221028.001
引用本文: 伍潇, 江鸿杰, 成忠序, 等. NiTip/5052 Al复合材料的制备及其阻尼行为[J]. 复合材料学报, 2023, 40(8): 4821-4830. doi: 10.13801/j.cnki.fhclxb.20221028.001
WU Xiao, JIANG Hongjie, CHENG Zhongxu, et al. Preparation and damping behavior of NiTip/5052 Al composites[J]. Acta Materiae Compositae Sinica, 2023, 40(8): 4821-4830. doi: 10.13801/j.cnki.fhclxb.20221028.001
Citation: WU Xiao, JIANG Hongjie, CHENG Zhongxu, et al. Preparation and damping behavior of NiTip/5052 Al composites[J]. Acta Materiae Compositae Sinica, 2023, 40(8): 4821-4830. doi: 10.13801/j.cnki.fhclxb.20221028.001

NiTip/5052 Al复合材料的制备及其阻尼行为

doi: 10.13801/j.cnki.fhclxb.20221028.001
基金项目: 国家自然科学基金(52061011);广西自然科学基金(2022GXNSFAA035574)
详细信息
    通讯作者:

    江鸿杰,博士,副教授,硕士生导师,研究方向为铝合金及其复合材料 E-mail: jhj2014@glut.edu.cn

  • 中图分类号: TB331

Preparation and damping behavior of NiTip/5052 Al composites

Funds: National Natural Science Foundation of China (52061011); Guangxi Natural Science Foundation (2022GXNSFAA035574)
  • 摘要: 随着工业技术的发展,机械工程领域对铝合金材料的减振降噪性能提出了更高的要求。针对铝合金本征阻尼较低的问题,本文通过搅拌摩擦加工(FSP)制备出具有相变阻尼特征的NiTip/5052 Al复合材料。利用SEM、EDS和XRD对NiTip/5052 Al复合材料的微观结构和物相组成进行分析;分别采用差式扫描量热仪(DSC)、万能试验机和动态热机械分析仪(DMA)分析复合材料的相变过程、力学性能及其阻尼行为。研究表明:经过FSP后,NiTi颗粒与5052 Al基体界面结合良好,未发生界面反应;NiTip/5052 Al复合材料具备NiTi合金的马氏体相变特征;NiTip/5052 Al复合材料的强度均高于5052 Al合金和FSP-5052 Al合金,其中as-NiTip/5052 Al复合材料的抗拉强度为240 MPa,分别比5052 Al和FSP-5052 Al合金高23.7%和10.1%;NiTip/5052 Al复合材料的阻尼性能均明显优于5052 Al合金和FSP-5052 Al合金,且复合材料均呈现出明显的相变内耗峰;当升温至23℃时,550℃-NiTip/5052 Al复合材料的内耗峰值分别比5052 Al和FSP-5052 Al合金高300%和140%;当升温至33℃时,as-NiTip/5052 Al复合材料的内耗峰值分别比5052 Al和FSP-5052 Al合金高233%和100%;NiTip/5052 Al复合材料的储能模量均随着温度和应变的增加而减小,且均高于5052 Al合金和FSP-5052 Al合金。

     

  • 图  1  搅拌摩擦加工(FSP) NiTip/5052 Al复合材料示意图

    Figure  1.  Schematic diagram of friction stir processing (FSP) preparation NiTip/5052 Al composites

    图  2  NiTip/5052 Al复合材料的SEM图像:(a) NiTi颗粒和NiTip/5052 Al复合材料;(b) 图2(a)的局部放大图;(c) 图2(b)的面扫描图;(d) NiTi颗粒与铝基体界面处的线扫描图

    Figure  2.  SEM images of NiTip/5052 Al composites: (a) NiTi particles and NiTip/5052 Al composites; (b) High magnification image of Fig.2(a); (c) Face scanning images of Fig.2(b); (d) Line scanning image at the interface between NiTi particle and Al matrix

    图  3  5052 Al合金、NiTi颗粒和NiTip/5052 Al复合材料的XRD图谱

    Figure  3.  XRD patterns of 5052 Al alloy, NiTi particles and NiTip/5052 Al composites

    图  4  NiTi颗粒(a)和NiTip/5052 Al复合材料(b)的DSC曲线图

    Figure  4.  DSC graphs of NiTi particles (a) and NiTip/5052 Al composites (b)

    图  5  5052 Al合金和NiTip/5052 Al复合材料的应力-应变曲线

    R—Transition arc radius of tensile sample

    Figure  5.  Stress-strain curves of 5052 Al alloy and NiTip/5052 Al composites

    图  6  拉伸断口形貌图:(a) 5052 Al;(b) FSP-5052 Al;(c) as-NiTip/5052 Al复合材料;(d)图6(c)中局部区域放大图

    Figure  6.  Tensile fracture morphology: (a) 5052 Al; (b) FSP-5052 Al; (c) as-NiTip/5052 Al composites; (d) High magnification image of Fig.6(c)

    图  7  5052 Al合金和NiTip/5052 Al复合材料的温度-内耗曲线:(a)降温过程;(b)升温过程

    Figure  7.  Temperature-internal friction curves of 5052 Al alloy and NiTip/5052 Al composites: (a) Cooling process; (b) Heating process

    图  8  5052 Al合金和NiTip/5052 Al复合材料的应变-内耗曲线

    Figure  8.  Strain-internal friction curves of 5052 Al alloy and NiTip/5052 Al composites

    图  9  5052 Al合金和NiTip/5052 Al复合材料的储能模量测试曲线:(a)温度-储能模量曲线;(b)应变-储能模量曲线

    Figure  9.  Storage modulus test curves of 5052 Al alloy and NiTip/5052 Al composites: (a) Temperature-storage modulus curves; (b) Strain-storage modulus curves

    表  1  5052 Al的标称化学成分 (wt%)

    Table  1.   Nominal chemical composition of 5052 Al (wt%)

    MgFeSiCrCuMnZnAl
    2.2-2.80.40.250.15-0.350.10.10.1Balance
    下载: 导出CSV

    表  2  NiTi颗粒和NiTip/5052 Al复合材料的相变峰值温度

    Table  2.   Phase transformation peak temperatures of NiTi particles and NiTip/5052 Al composites

    SampleAp/℃Rp/℃Mp/℃
    as-NiTip19.75−23.0
    550℃-NiTip14.1−14.2
    as-NiTip/5052 Al21.5−22.7
    550℃-NiTip/5052 Al12.0−24.7
    Notes: Ap, Rp and Mp represent the peak temperatures of B19'→B2, B2→R and B2→B19' phase transition respectively, the peak temperature of R→B19' phase transition is also expressed by Mp.
    下载: 导出CSV
  • [1] WANG B, CHEN X H, PAN F S, et al. Effects of cold rolling and heat treatment on microstructure and mechanical properties of AA 5052 aluminum alloy[J]. Transactions of Nonferrous Metals Society of China,2015,25(8):2481-2489. doi: 10.1016/S1003-6326(15)63866-3
    [2] 秦艳利, 孙博慧, 张昊, 等. 选区激光熔化铝合金及其复合材料在航空航天领域的研究进展[J]. 中国激光, 2021, 48(14):15-31.

    QIN Yanli, SUN Bohui, ZHANG Hao, et al. Development of selective laser melted aluminum alloys and aluminum matrix composites in aerospace field[J]. Chinese Journal of Lasers,2021,48(14):15-31(in Chinese).
    [3] 曾广凯, 崔君阁, 王雨辰, 等. Al3Ti/Al-Si-Cu-V-Zr合金复合材料显微组织及拉伸性能[J]. 材料导报, 2022, 36(8):152-156.

    ZENG Guangkai, CUI Junge, WANG Yuchen, et al. Microstructure and tensile properties of Al3Ti/Al-Si-Cu-V-Zr alloy composites[J]. Materials Reports,2022,36(8):152-156(in Chinese).
    [4] ZHOU G F, JIANG H J, LIU C Y, et al. Effect of porous particle layer on damping capacity and storage modulus of AlSi30p/5052 Al composites[J]. Materials Letters,2021,300:130162. doi: 10.1016/j.matlet.2021.130162
    [5] WANG Y B, JIANG H J, LIU C Y, et al. Influence of Al particle layer on damping behavior of Alp/7075Al composites fabricated by hot rolling[J]. Journal of Alloys and Compounds,2021,882:160763. doi: 10.1016/j.jallcom.2021.160763
    [6] VENKATESWARA REDDY K, BHEEKYA NAIK R, MADHUSUDHAN REDDY G, et al. Damping capacity of aluminium surface layers developed through friction stir processing[J]. Materials Letters,2021,298:130031. doi: 10.1016/j.matlet.2021.130031
    [7] JIANG H J, LIU C Y, CHEN Y, et al. Evaluation of microstructure, damping capacity and mechanical properties of Al-35Zn and Al-35Zn-0.5Sc alloys[J]. Journal of Alloys and Compounds,2018,739:114-121. doi: 10.1016/j.jallcom.2017.12.234
    [8] LIU C Y, JIANG H J, ZHANG B, et al. High damping capacity of Al alloys produced by friction stir processing[J]. Materials Characterization,2018,136:382-387. doi: 10.1016/j.matchar.2018.01.009
    [9] 黄文益, 江鸿杰, 王一博, 等. 6061铝颗粒层增强7075铝基复合材料的微观结构及阻尼性能[J]. 复合材料学报, 2021, 38(12):4220-4227. doi: 10.13801/j.cnki.fhclxb.20210309.004

    HUANG Wenyi, JIANG Hongjie, WANG Yibo, et al. Microstructure and damping capacity of 7075 aluminum matrix composite enhanced by 6061 aluminum particles layer[J]. Acta Materiae Compositae Sinica,2021,38(12):4220-4227(in Chinese). doi: 10.13801/j.cnki.fhclxb.20210309.004
    [10] 张忠明, 胡博, 高峰涛, 等. 往复挤压法制备Al2O3P/Al复合材料的室温阻尼性能[J]. 复合材料学报, 2011, 28(4):130-135.

    ZHANG Zhongming, HU Bo, GAO Fengtao, et al. Room-temperature damping capacity of Al2O3P/Al composites prepared by reciprocating extrusion[J]. Acta Materiae Compositae Sinica,2011,28(4):130-135(in Chinese).
    [11] SAN JUAN J, NÓ M L. Damping behavior during martensitic transformation in shape memory alloys[J]. Journal of Alloys and Compounds,2003,355(1-2):65-71. doi: 10.1016/S0925-8388(03)00277-9
    [12] CHEN Y, JIANG H C, LIU S W, et al. Damping capacity of TiNi-based shape memory alloys[J]. Journal of Alloys and Compounds,2009,482(1-2):151-154. doi: 10.1016/j.jallcom.2009.03.148
    [13] HU J, WU G H, ZHANG Q, et al. Mechanical properties and damping capacity of SiCp/TiNif/Al composite with different volume fraction of SiC particle[J]. Composites Part B: Engineering,2014,66:400-406. doi: 10.1016/j.compositesb.2014.06.013
    [14] HUO X Y, CHEN P, LAHKAR S, et al. Occurrence of the R-phase with increased stability induced by low temperature precipitate-free aging in a Ni50.9Ti49.1 alloy[J]. Acta Materialia,2022,227:117688. doi: 10.1016/j.actamat.2022.117688
    [15] SONG Y W, JIN M J, HAN X C, et al. Microstructural origin of ultrahigh damping capacity in Ni50.8Ti49.2 alloy containing nanodomains induced by insufficient annealing and low-temperature aging[J]. Acta Materialia,2021,205:116541. doi: 10.1016/j.actamat.2020.116541
    [16] WANG W, HAN P, XI X, et al. Preparation of NiTip/WE43 magnesium matrix composites by friction stir processing[J]. Rare Metal Materials and Engineering,2020,49(12):4050-4054.
    [17] DIXIT M, NEWKIRK J W, MISHRA R S. Properties of friction stir-processed Al 1100-NiTi composite[J]. Scripta Materialia,2007,56(6):541-544. doi: 10.1016/j.scriptamat.2006.11.006
    [18] KAYA I, KARACA H E, NAGASAKO M, et al. Effects of aging temperature and aging time on the mechanism of martensitic transformation in nickel-rich NiTi shape memory alloys[J]. Materials Characterization,2020,159:110034. doi: 10.1016/j.matchar.2019.110034
    [19] ZHU J, WU H H, WU Y, et al. Influence of Ni4Ti3 precipitation on martensitic transformations in NiTi shape memory alloy: R phase transformation[J]. Acta Materialia,2021,207:116665. doi: 10.1016/j.actamat.2021.116665
    [20] RADI A, KHALIL A J, ETMINANFAR M R, et al. Influence of stress aging process on variants of nano-Ni4Ti3 precipitates and martensitic transformation temperatures in NiTi shape memory alloy[J]. Materials and Design,2018,142:93-100. doi: 10.1016/j.matdes.2018.01.024
    [21] 冯欣欣, 衣晓洋, 王海振, 等. Ti-Ni基记忆合金复合材料的研究进展[J]. 复合材料学报, 2021, 38(7):2070-2077. doi: 10.13801/j.cnki.fhclxb.20210312.007

    FENG Xinxin, YI Xiaoyang, WANG Haizhen, et al. Progress of Ti-Ni based shape memory alloy composites[J]. Acta Materiae Compositae Sinica,2021,38(7):2070-2077(in Chinese). doi: 10.13801/j.cnki.fhclxb.20210312.007
    [22] 曹金营, 曹贺, 欧阳求保, 等. 多道次搅拌摩擦加工对SiCp/2 A14铝合金复合材料显微组织和力学性能的影响[J]. 复合材料学报, 2020, 37(11):2861-2869.

    CAO Jinying, CAO He, OUYANG Qiubao, et al. Effect of multi-pass friction stir processing on microstructure and mechanical properties of SiCP/2A14 aluminum alloy composites[J]. Acta Materiae Compositae Sinica,2020,37(11):2861-2869(in Chinese).
    [23] HUANG G Q, YAN Y F, WU J, et al. Microstructure and mechanical properties of fine-grained aluminum matrix composite reinforced with nitinol shape memory alloy particulates produced by underwater friction stir processing[J]. Journal of Alloys and Compounds,2019,786:257-271. doi: 10.1016/j.jallcom.2019.01.364
    [24] SANATY-ZADEH A. Comparison between current models for the strength of particulate-reinforced metal matrix nanocomposites with emphasis on consideration of Hall-Petch effect[J]. Materials Science and Engineering A,2012,531:112-118. doi: 10.1016/j.msea.2011.10.043
    [25] JIANG H J, ZHANG B, LIU C Y, et al. Mechanical and damping behavior of age-hardened and non-age-hardened Al alloys after friction stir processing[J]. Acta Metallurgica Sinica (English Letters),2019,32(9):1135-1141. doi: 10.1007/s40195-019-00905-3
    [26] 黄学文, 董光能, 王慧, 等. TiNi形状记忆合金阻尼特性的研究[J]. 材料工程, 2003, 31(5):3-6, 14. doi: 10.3969/j.issn.1001-4381.2003.08.001

    HUANG Xuewen, DONG Guangneng, WANG Hui, et al. Study on damping characteristics of TiNi shape memory alloy[J]. Journal of Materials Engineering,2003,31(5):3-6, 14(in Chinese). doi: 10.3969/j.issn.1001-4381.2003.08.001
    [27] 康泽天, 王志勇, 周博, 等. 形状记忆合金超弹性缆索力学行为的有限单元法[J]. 机械工程学报, 2020, 56(14):65-72.

    KANG Zetian, WANG Zhiyong, ZHOU Bo, et al. Finite element method for mechanical behavior of shape memory alloy superelastic cables[J]. Journal of Mechanical Engi-neering,2020,56(14):65-72(in Chinese).
    [28] 路建宁, 王娟, 林颖菲, 等. 表面氧化处理对SiC/A356 Al复合材料组织及性能的影响[J]. 材料导报, 2020, 34(S2):1381-1385.

    LU Jianning, WANG Juan, LIN Yingfei, et al. Effect of surface oxidation treatment on the structure and properties of SiC/A356 Al composites[J]. Materials Reports,2020,34(S2):1381-1385(in Chinese).
    [29] LIU S, LI X, YAN D, et al. A novel TiNi/AlSi composite with high strength and high damping capacity[J]. Journal of Materials Science and Technology,2008,24(6):903-906.
    [30] NI D R, WANG J J, MA Z Y. Shape memory effect, thermal expansion and damping property of friction stir processed NiTip/Al composite[J]. Journal of Materials Science and Technology,2016,32(2):162-166. doi: 10.1016/j.jmst.2015.12.013
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  653
  • HTML全文浏览量:  297
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-18
  • 修回日期:  2022-09-26
  • 录用日期:  2022-10-07
  • 网络出版日期:  2022-10-31
  • 刊出日期:  2023-08-15

目录

    /

    返回文章
    返回