留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钢丝网或纤维网增强超高性能混凝土双向板弯曲性能

邓宗才 鹿宇浩 桂营金

邓宗才, 鹿宇浩, 桂营金. 钢丝网或纤维网增强超高性能混凝土双向板弯曲性能[J]. 复合材料学报, 2022, 39(10): 4757-4768. doi: 10.13801/j.cnki.fhclxb.20211022.002
引用本文: 邓宗才, 鹿宇浩, 桂营金. 钢丝网或纤维网增强超高性能混凝土双向板弯曲性能[J]. 复合材料学报, 2022, 39(10): 4757-4768. doi: 10.13801/j.cnki.fhclxb.20211022.002
DENG Zongcai, LU Yuhao, GUI Yingjin. Flexural properties of ultra high performance concrete reinforced with steel wire mesh or fiber mesh[J]. Acta Materiae Compositae Sinica, 2022, 39(10): 4757-4768. doi: 10.13801/j.cnki.fhclxb.20211022.002
Citation: DENG Zongcai, LU Yuhao, GUI Yingjin. Flexural properties of ultra high performance concrete reinforced with steel wire mesh or fiber mesh[J]. Acta Materiae Compositae Sinica, 2022, 39(10): 4757-4768. doi: 10.13801/j.cnki.fhclxb.20211022.002

钢丝网或纤维网增强超高性能混凝土双向板弯曲性能

doi: 10.13801/j.cnki.fhclxb.20211022.002
基金项目: 北京市教委科技重点资助项目(KZ201810005008).
详细信息
    通讯作者:

    邓宗才,博士,教授,博士生导师,研究方向为超高性能混凝土及其结构 E-mail:dengzc@bjut.edu.cn

  • 中图分类号: TU376

Flexural properties of ultra high performance concrete reinforced with steel wire mesh or fiber mesh

  • 摘要: 为研究钢丝网或纤维网对混杂纤维超高性能混凝土(Ultra-high performance concrete,UHPC)板弯曲性能的影响,进行了四边简支双向板弯曲试验。UHPC中短切纤维为:单掺钢纤维、钢纤维分别与聚乙烯醇纤维、玻璃纤维、玄武岩纤维混掺等。研究参数为:钢丝网与玻璃纤维网层数、孔径、混掺纤维比例等。结果表明,单掺体积分数为1.5vol%的钢纤维时,铺设3层和4层钢丝网的UHPC板的极限承载力和25 mm挠度处的能量吸收值较2层分别提升14.9%、32.3%和14.1%、25.2%;孔径较小的钢丝网对UHPC板承载力和韧性提升明显。当混杂纤维总体积分数为1.5vol%且钢丝网2层时,混掺1.0vol%钢纤维和0.5vol%聚乙烯醇纤维对UHPC板增强增韧效果更好,0.5vol%钢纤维与1.0vol%玻璃纤维或玄武岩纤维混掺较0.5vol%钢纤维与1.0vol%聚乙烯醇纤维混掺对改善板峰后持荷能力更有利,即钢纤维与较高弹性模量非金属纤维混掺有利于提高裂后承载力。与玻璃纤维网相比,铺设钢丝网的UHPC板在峰后延性更好。提出了以素UHPC板峰值荷载挠度作为初裂挠度的韧性指标评定方法,该方法可表征网格和纤维对UHPC板裂后韧性的贡献。基于网格有效利用率概念,建立了板抗弯承载力计算方法,理论值与试验值吻合良好。

     

  • 图  1  钢丝网格 (a) 和玻璃纤维网格 (b)

    Figure  1.  Steel wire mesh (a) and glass fiber mesh (b)

    图  2  UHPC双向板浇筑步骤

    Figure  2.  UHPC two-way slabs pouring steps

    图  3  不同层数网格在UHPC双向板内的高度示意图

    Figure  3.  Schematic diagram of height of mesh with different layers in the UHPC two-way slabs

    图  4  试验加载和测量装置

    Figure  4.  Loading and measuring arrangement

    LVDT—Linear variable displacement transducer

    图  5  双向板加载方式示意图

    Figure  5.  Loading mode of two-way board

    P—Load

    图  6  铺设SWM的UHPC板荷载-挠度曲线

    Figure  6.  Load-deflection curve of UHPC slabs with SWM

    图  7  不同网格层数UHPC板破坏形态

    Figure  7.  Failure modes of UHPC slabs with different mesh layers

    图  8  SWM或GFM增强UHPC板破坏形态示意图

    Figure  8.  Schematic diagram of failure modes of UHPC slabs with SWM or GFM

    图  9  不同SWM层数UHPC板荷载-挠度曲线

    Figure  9.  Load-deflection curves of UHPC slabs with different SWM layers

    图  10  不同SWM孔径UHPC板荷载-挠度曲线

    Figure  10.  Load-deflection curves of UHPC slabs with different SWM aperture

    图  11  不同纤维种类UHPC板荷载-挠度曲线

    Figure  11.  Load-deflection curves of UHPC slabs with different fiber types

    图  12  不同网格种类UHPC板荷载-挠度曲线

    Figure  12.  Load-deflection curves of UHPC slabs with different mesh types

    图  13  不同SWM层数UHPC板能量吸收值

    Figure  13.  Energy absorption value of UHPC slabs with different SWM layers

    图  14  不同SWM孔径UHPC板能量吸收值

    Figure  14.  Energy absorption value of UHPC slabs with different SWM aperture

    图  15  不同纤维种类UHPC板能量吸收值

    Figure  15.  Energy absorption value of UHPC slabs with different fiber types

    图  16  不同网格种类UHPC板能量吸收值

    Figure  16.  Energy absorption value of UHPC slabs with different mesh types

    图  17  UHPC双向板矩形截面受弯承载力计算图

    Figure  17.  Calculation diagram of bending capacity of rectangular section of UHPC two-way slabs

    fc—Axial compressive strength; ft—Axial tensile strength; h0—Effective height of section; Mu−Theoretical bending capacity; a—Distance from the mesh resultant point in the tension zone to the edge of the bottom section of the slab; b—Calculated width of the slab; α1—Equivalent rectangular stress diagram coefficient of compression zone, take 0.88; β—Equivalent rectangular stress diagram coefficient of tensile zone, take 0.35; xc—Height of compression zone; xt—Equivalent rectangular stress height of tension zone; fte—Mesh effective stress; k—Ratio of x to xc; Af—Total section area of grid; h—Height of slab; x—Equivalent rectangular stress height of compression zone

    表  1  钢丝网和玻璃纤维网力学性能参数

    Table  1.   Mechanical property parameters of steel wire mesh and glass fiber mesh

    Mesh nameTensile strength/MPaElastic modulus/GPaMonofilament area/mm2Elongation/
    %
    SWM5822000.7852.6
    GFM2200790.2903.0
    下载: 导出CSV

    表  2  超高性能混凝土(UHPC)基体配合比

    Table  2.   Composition ratio of ultra-high performance concrete (UHPC)

    Matrix typeCementSilicaMineral powderRiver sandWater
    consumption
    UHPC1.0000.1820.6212.1820.327
    下载: 导出CSV

    表  3  SWM或GFM增强UHPC双向板试件编号与分组方案

    Table  3.   Specimen number and grouping scheme of UHPC reinforced with SWM or GFM

    Group categorySpecimen numberDosage and type
    of fiber
    Number of mesh layers
    The first
    group
    U1-S2-121.5vol% SF2
    U1-S3-121.5vol% SF3
    U1-S4-121.5vol% SF4
    The second groupU1-S2-121.5vol% SF2
    U1-S2-201.5vol% SF2
    U1-S3-121.5vol% SF3
    U1-S3-201.5vol% SF3
    U1-S4-121.5vol% SF4
    U1-S4-201.5vol% SF4
    The third groupU1-S2-201.5vol% SF2
    U2-S2-201.0vol% SF+0.5vol% PVA2
    U3-S2-200.5vol% SF+1.0vol% PVA2
    U4-S2-200.5vol% SF+1.0vol% GF2
    U5-S2-200.5vol% SF+1.0vol% BF2
    The fourth
    group
    U1-S2-121.5vol% SF2
    U1-S2-201.5vol% SF2
    U1-G2-51.5vol% SF2
    Notes: In specimen number, Un represent UHPC types; Sn/Gn represent SWM or GFM types and number of mesh layers; The next number represents the mesh aperture. Such as, U1-S2-12 represents UHPC slab with 2 layers of steel wire mesh with 12 mm aperture and 1.5vol% steel fiber volume fraction.
    下载: 导出CSV

    表  4  短切纤维性能参数

    Table  4.   Performance parameters of chopped fibers

    Fiber typeDiameter/µmTensile strength/MPaDensity/(g·cm−3)Elastic modulus/GPaLength/mm
    Steel fiber20029507820513
    Polyvinyl alcohol4016001.335-4012
    Glass fiber1817002.687218
    Basalt fiber2032002.690-11020
    下载: 导出CSV

    表  5  SWM或GFM增强UHPC板初裂、峰值荷载及其挠度

    Table  5.   Initial crack, peak load and deflection of UHPC slabs with SWM or GFM

    Specimen numberPcr/kNδcr/mmPm/kNδm/mm
    U1-S2-1261.761.5080.153.79
    U1-S3-1264.881.8492.067.76
    U1-S4-1272.952.50106.058.53
    U1-S2-2057.931.4472.793.43
    U1-S3-2061.151.6480.307.32
    U1-S4-2068.352.0588.738.86
    U2-S2-2051.341.4877.083.49
    U3-S2-2052.721.5365.593.47
    U4-S2-2045.971.5760.7313.02
    U5-S2-2043.151.3957.6211.93
    U1-G2-530.560.8573.146.53
    Notes: Pcr—Initial crack load;δcr—Deflection at initial crack load;Pm—Peak load;δm—Deflection at peak load.
    下载: 导出CSV

    表  6  SWM或GFM增强UHPC板不同挠度处能量吸收计算值

    Table  6.   Calculated values of energy absorption for different deflections of UHPC slabs with SWM or GFM

    Specimen
    number
    Qcr/JQm/JQ2/JQ5/JQ15/JQ25/J
    U1-S2-1254.78226.4288.71321.551084.371769.73
    U1-S3-1274.39578.5884.55329.841229.862019.31
    U1-S4-1294.82676.1060.43315.281332.852215.37
    U1-S2-2044.57180.3680.03290.77934.061480.90
    U1-S3-2061.06490.5483.62306.651087.161762.61
    U1-S4-2082.41656.3679.01320.161181.461965.45
    U2-S2-2041.32178.8771.49292.22959.041501.36
    U3-S2-2040.85156.7866.52254.19805.111139.25
    U4-S2-2036.30673.0456.85213.34785.481206.25
    U5-S2-2036.15578.5863.19211.76759.311191.33
    U1-G2-512.83327.6152.35218.20744.56
    Notes: Qcr and Qm—Energy absorption values at the initial crack and peak load deflection of UHPC slabs, respectively; Q2, Q5, Q15, Q25—Energy absorption value of UHPC slabs with deflection of 2 mm, 5 mm, 15 mm and 25 mm, respectively.
    下载: 导出CSV

    表  7  SWM或GFM增强UHPC板硬化指数和韧性指标

    Table  7.   Hardening index and toughness index of UHPC slabs with SWM or GFM

    Specimen numberIShT15T25
    U1-S2-121.30141.68231.86
    U1-S3-121.42160.82264.70
    U1-S4-121.45174.38290.50
    U1-S2-201.26121.90193.86
    U1-S3-201.31142.05230.92
    U1-S4-201.30154.46257.61
    U2-S2-201.50125.19196.55
    U3-S2-201.24104.94148.90
    U4-S2-201.32102.35157.72
    U5-S2-201.3498.91155.75
    U1-G2-52.3996.97
    Notes: ISh—Hardening index; T15—Toughness index at 15 mm deflection; T25—Toughness index at 25 mm deflection.
    下载: 导出CSV

    表  8  各UHPC板抗弯承载力计算结果

    Table  8.   Calculation results of bending capacity of UHPC slabs

    Specimen
    number
    fc/MPaft/MPah0/mmεcfte/MPaλ/%Mu
    /(kN·m)
    Me
    /(kN·m)
    Me/Mu
    U1-S2-1298.816.3743.50.003913279.7382.09.9610.021.006
    U1-S3-1298.816.3741.00.003972595.6764.910.9511.131.017
    U1-S4-1298.816.3738.50.004012199.3355.011.5413.261.198
    U1-S2-2098.816.3743.50.003533908.7397.77.819.101.165
    U1-S3-2098.816.3741.00.003653205.4480.18.8210.041.138
    U1-S4-2098.816.3738.50.003852740.1068.59.3911.091.227
    U2-S2-2091.126.4943.50.003533871.3596.37.739.641.247
    U3-S2-2090.786.1143.50.003413681.4492.07.368.201.114
    U4-S2-2086.525.9543.50.003393570.4989.37.147.591.064
    U5-S2-2083.065.8943.50.003383480.9187.06.977.201.034
    U1-G2-598.816.3745.00.004092027.7378.07.248.621.191
    Notes:fc—Axial compressive strength; ft—Axial tensile strength; h0—Effective height of section; εc—Compressive strain of concrete; fte—Mesh effective stress; λ—Effective utilization of mesh; Mu—Theoretical bending capacity; Me—Experimental bending capacity.
    下载: 导出CSV
  • [1] GUO Z W, DUAN X Z, WANG Q, et al. Development on the corrosion of steel fiber and prevention in the ultra-high performance concrete (UHPC)[J]. Materials Science Forum,2021,1036:358-370. doi: 10.4028/www.scientific.net/MSF.1036.358
    [2] NIU Y F, WEI J X, JIAN C J. Crack propagation behavior of ultra-high-performance concrete (UHPC) reinforced with hybrid steel fibers under flexural loading[J]. Construction and Building Materials,2021,294:123510. doi: 10.1016/j.conbuildmat.2021.123510
    [3] FAN W, SHEN D J, ZHANG Z Y, et al. A novel UHPFRC-based protective structure for bridge columns against vehicle collisions: Experiment, simulation, and optimization[J]. Engineering Structures,2020,207:110247. doi: 10.1016/j.engstruct.2020.110247
    [4] 邵旭东, 樊伟, 黄政宇. 超高性能混凝土在结构中的应用[J]. 土木工程学报, 2021, 54(1):1-13.

    SHAO Xudong, FAN Wei, HUANG Zhengyu. Application of ultra-high performance concrete in engineering structures[J]. China Civil Engineering Journal,2021,54(1):1-13(in Chinese).
    [5] 陈宝春, 韦建刚, 苏家战, 等. 超高性能混凝土应用进展[J]. 建筑科学与工程学报, 2019, 36(2):10-20. doi: 10.3969/j.issn.1673-2049.2019.02.003

    CHEN Baochun, WEI Jian'gang, SU Jiazhan, et al. State-of-the-art progress on application of ultra-high performance concrete[J]. Journal of Architecture and Civil Engineering,2019,36(2):10-20(in Chinese). doi: 10.3969/j.issn.1673-2049.2019.02.003
    [6] FERDOSIAN I, CAMOES A. Mechanical performance and post-cracking behavior of self-compacting steel-fiber reinforced eco-efficient ultra-high performance concrete[J]. Cement and Concrete Composites,2021,121:104050. doi: 10.1016/j.cemconcomp.2021.104050
    [7] 梁兴文, 胡翱翔, 于婧, 等. 钢纤维对超高性能混凝土抗弯力学性能的影响[J]. 复合材料学报, 2018, 35(3):722-731.

    LIANG Xingwen, HU Aoxiang, YU Jing, et al. Effect of steel fibers on the flexural response of ultra-high performance concrete[J]. Acta Materiae Compositae Sinica,2018,35(3):722-731(in Chinese).
    [8] 邵旭东, 李芳园, 邱明红, 等. 钢纤维特性对UHPC轴拉性能与弯拉性能的影响及对比研究[J]. 中国公路学报, 2020, 33(4):51-64. doi: 10.3969/j.issn.1001-7372.2020.04.006

    SHAO Xudong, LI Fangyuan, QIU Minghong, et al. Influential and comparative research on the effects of steel fiber properties on the axial tensile and bending tensile properties of UHPC[J]. China Journal of Highway and Transport,2020,33(4):51-64(in Chinese). doi: 10.3969/j.issn.1001-7372.2020.04.006
    [9] KIM D J, PARK S H, RYU G S, et al. Comparative flexural behavior of hybrid ultra high performance fiber reinforced concrete with different macro fibers[J]. Construction and Building Materials,2011,25(11):4144-4155. doi: 10.1016/j.conbuildmat.2011.04.051
    [10] SU T K, JEONG I C, KYUNG T K, et al. Hybrid effects of steel fiber and microfiber on the tensile behavior of ultra-high performance concrete[J]. Composite Structures,2016,145:37-42. doi: 10.1016/j.compstruct.2016.02.075
    [11] YAN P, CHEN B, AFGAN S, et al. Experimental research on ductility enhancement of ultra-high performance concrete incorporation with basalt fiber, polypropylene fiber and glass fiber[J]. Construction and Building Materials,2021,279:122489. doi: 10.1016/j.conbuildmat.2021.122489
    [12] 朱江. 纤维增强钢丝网混凝土构件抗弯性能试验研究[D]. 大连: 大连理工大学, 2007.

    ZHU Jiang. Experimental study on flexural behavior of fiber reinforced ferroconcrete member[D]. Dalian: Dalian University of Technology, 2007(in Chinese).
    [13] 周臻, 张逸, 王永泉, 等. 网格增强UHPC薄板拉伸力学性能试验研究[J]. 东南大学学报(自然科学版), 2019, 49(4):611-617.

    ZHOU Zhen, ZHANG Yi, WANG Yongquan, et al. Experimental study on tensile mechanical property of grid reinforced UHPC plates[J]. Journal of Southeast University (Natural Science Edition),2019,49(4):611-617(in Chinese).
    [14] 李冬, 丁一宁. 钢纤维对玄武岩纤维编织网增强混凝土板双向弯曲性能的影响[J]. 复合材料学报, 2019, 36(2):482-490.

    LI Dong, DING Yining. Effect of steel fiber on biaxial flexural property of TRC with basalt fiber mesh in slab test[J]. Acta Materiae Compositae Sinica,2019,36(2):482-490(in Chinese).
    [15] 丁一宁, 菅淑敏, 李冬. 玻璃纤维网格布的耐碱性能及其对混凝土板双向受弯性能的影响[J]. 复合材料学报, 2019, 36(4):954-963.

    DING Yining, JIAN Shumin, LI Dong. Alkaline resistance of glass fiber meshes and its effect on biaxial flexural behavior of concrete slabs[J]. Acta Materiae Compositae Sinica,2019,36(4):954-963(in Chinese).
    [16] LI D, DING Y N, WANG Q, et al. Hybrid effect of fiber mesh and short fibers on the biaxial bending behavior of TRC[J]. Magazine of Concrete Research,2018,71(16):869-880. doi: 10.1680/jmacr.17.00284
    [17] 赵国藩, 李士恩, 李丽娟, 等. 钢纤维增强钢丝网混凝土T形梁的抗弯试验研究[J]. 华南理工大学学报(自然科学版), 2008, 36(1):117-121, 127.

    ZHAO Guofan, LI Shien, LI Lijuan, et al. Experimental investigation into flexural behavior of steel fiber-reinforced ferroconcrete T-shape beam[J]. Journal of South China University of Technology (Natural Science Edition),2008,36(1):117-121, 127(in Chinese).
    [18] European Federation of National Associations Representing for Concrete. European specification for sprayed concrete: ISBN 0-952-24831-X[S]. Loughborough: Loughborough University, 1996.
    [19] KONG K, MESTICOU Z, MICHEL M, et al. Comparative characterization of the durability behaviour of textile-reinforced concrete (TRC) under tension and bending[J]. Composite Structures,2017,179:107-123. doi: 10.1016/j.compstruct.2017.07.030
    [20] SOLEIMANI M S, BANTHIN N. Flexural response of hybrid fiber-reinforced cementitious composites[J]. ACI Materials Journal, 2005, 102(6): 382-389.
    [21] 王志成. 超高性能混凝土结构抗弯性能试验研究[D]. 成都: 西南交通大学, 2017.

    WANG Zhicheng. Experimental study on flexural perfor-mance of ultra high performance concrete structure[D]. Chengdu: Southwest Jiaotong University, 2017(in Chinese).
  • 加载中
图(17) / 表(8)
计量
  • 文章访问数:  987
  • HTML全文浏览量:  510
  • PDF下载量:  49
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-24
  • 修回日期:  2021-10-12
  • 录用日期:  2021-10-12
  • 网络出版日期:  2021-10-26
  • 刊出日期:  2022-08-22

目录

    /

    返回文章
    返回