留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

激光增材制造镍基复合材料界面连接机制与断裂行为

高永康 陈洪胜 聂慧慧 薛柏林 刘润爱 郑留伟 王文先 陈晓春

高永康, 陈洪胜, 聂慧慧, 等. 激光增材制造镍基复合材料界面连接机制与断裂行为[J]. 复合材料学报, 2023, 40(3): 1797-1806. doi: 10.13801/j.cnki.fhclxb.20220419.006
引用本文: 高永康, 陈洪胜, 聂慧慧, 等. 激光增材制造镍基复合材料界面连接机制与断裂行为[J]. 复合材料学报, 2023, 40(3): 1797-1806. doi: 10.13801/j.cnki.fhclxb.20220419.006
GAO Yongkang, CHEN Hongsheng, NIE Huihui, et al. Interface connection mechanism and fracture behavior of nickel-based composites fabricated by selective laser melting[J]. Acta Materiae Compositae Sinica, 2023, 40(3): 1797-1806. doi: 10.13801/j.cnki.fhclxb.20220419.006
Citation: GAO Yongkang, CHEN Hongsheng, NIE Huihui, et al. Interface connection mechanism and fracture behavior of nickel-based composites fabricated by selective laser melting[J]. Acta Materiae Compositae Sinica, 2023, 40(3): 1797-1806. doi: 10.13801/j.cnki.fhclxb.20220419.006

激光增材制造镍基复合材料界面连接机制与断裂行为

doi: 10.13801/j.cnki.fhclxb.20220419.006
基金项目: 国家自然科学基金(51805358);山西省晋中市重点研发计划(Y201023);山西省自然科学基金(201901D111057);大学生创新创业训练计划项目(202010112011;202110112026)
详细信息
    通讯作者:

    陈洪胜,博士,副教授,硕士生导师,研究方向为先进金属基复合材料制备及成形技术 E-mail:chenhongsheng@tyut.edu.cn

    聂慧慧,博士,副教授,硕士生导师,研究方向为轻合金制备及成形技术 E-mail:niehuihui@tyut.edu.cn

  • 中图分类号: TB333;TG156

Interface connection mechanism and fracture behavior of nickel-based composites fabricated by selective laser melting

Funds: Supported by National Natural Science Foundation of China (51805358); Key Research and Development Program of Jinzhong, Shanxi Province (Y201023); Natural Science Foundation of Shanxi Province(201901D111057); College Students’ Innovative Entrepreneurial Training Plan Program(202010112011; 202110112026)
  • 摘要: 基于颗粒增强镍基复合材料优异的结构/功能特性,在航空航天、核电军工和电子电工等领域有着广泛的应用前景。本文选用机械球磨混粉+激光选区熔化方法(SLM)制备了碳化钨(WC)颗粒增强IN718复合材料(WC/IN718),对复合材料内部异质界面连接机制、强化机制和断裂行为进行了分析。研究结果表明:随着WC颗粒含量的增加(0wt%~20wt%),试件成形良好,WC颗粒均匀分布在基体内部,异质界面处无缺陷产生,界面处产生了贫碳的W2C层和碳化物层,基体合金主要呈柱状晶生长。由于熔池内部能量密度分布不同,低温位置WC颗粒的断裂方式为先形成界面反应层后由热应力引起断裂,高温位置WC颗粒优先发生断裂,断裂成小尺寸颗粒,后与熔化的基体合金形成界面反应层,弥散分布在基体内部。随着WC颗粒含量的增加,复合材料的强度呈现升高的趋势,而断裂韧性降低,抗拉强度最高可达1280 MPa,强化机制主要为载荷传递强化,断裂机制为WC颗粒的脆性断裂和基体合金的韧性断裂。

     

  • 图  1  IN718 (a)、球形碳化钨(WC) (b) 的SEM图像;(c) 异种粉末球磨混合示意图;(d) 20wt%WC/IN718混合粉末的SEM图像;(e) 激光选区熔化法(SLM)路径扫描示意图;(f) 打印的成型件宏观形貌图

    Figure  1.  SEM images of IN718 (a), spherical tungsten carbide (WC) (b); (c) Heterologous powder ball grinding mixing diagram; (d) SEM image of 20wt%WC/IN718 composites powder by mixing; (e) Illustration of selective laser melting (SLM) scanning path; (f) Macro topography of fabricated composites part

    n—Layer; R—Radius

    图  2  不同工艺参数下SLM增材制造WC/IN718复合材料金相组织:10%WC/IN718:(a) 190 W;(b) 200 W;(c) 210 W;15%WC/IN718:(d) 190 W;(e) 200 W;(f) 210 W;20%WC/IN718:(j) 190 W;(h) 200 W;(i) 210 W

    Figure  2.  Microstructures of WC/IN718 composites fabricated by SLM under different process parameters: 10%WC/IN718: (a) 190 W; (b) 200 W; (c) 210 W; 15%WC/IN718: (d) 190 W; (e) 200 W; (f) 210 W; 20%WC/IN718: (j) 190 W; (h) 200 W; (i) 210 W

    图  3  IN718合金及WC颗粒形貌:(a) IN718;(b) 20%WC/IN718;((c)~(d)) 20%WC/IN718复合材料内部WC颗粒形貌图

    Figure  3.  Microstructures of IN718 alloy and WC particles: (a) IN718; (b) 20%WC/IN718; ((c)-(d)) Morphologies of WC particle inside the 20%WC/IN718 composites

    图  4  10wt%WC/IN718增强复合材料EBSD三维图

    Figure  4.  EBSD spectrum of the 10wt%WC/IN718 enhanced composite

    图  5  SLM打印的IN718及其复合材料XRD图谱

    Figure  5.  XRD patterns of IN718 and composites printed by SLM

    图  6  10wt%WC/IN718复合材料SEM图像:(a) WC颗粒与IN718基体熔融结合界面;(b) 结合界面局部放大图;(c)界面的EDS面扫描图谱;(d)界面的EDS线扫描图谱;(e)图6(b)中界面标定点的EDS点扫描图谱

    Figure  6.  SEM image of 10wt%WC/IN718 composite: (a) Fusion binding interface between WC particles and IN718 matrix; (b) Local magnification plot of the binding interface; (c) EDS surface scan map of the interface; (d) EDS line scan map of the interface; (e) EDS point scan map of the calibration points in Fig.6 (b)

    图  7  WC/IN718复合材料内部WC的断裂机制示意图

    Figure  7.  Schematic diagram of fracture mechanism of WC in WC/IN718 composite

    图  8  WC/IN718异质界面TEM图像、EDS面扫及点扫能谱图

    Figure  8.  TEM image, EDS surface scanning and point scanning spectra of WC/IN718 heterogeneous interface

    图  9  颗粒/基体界面TEM局部形貌

    Figure  9.  TEM local morphologies of particle/matrix interface

    图  10  WC/IN718应力-应变曲线

    Figure  10.  Stress-strain curves of WC/IN718

    图  11  SLM打印IN718合金与10wt%WC/IN718复合材料及其断口SEM图像

    Figure  11.  SLM printed IN718 alloy and 10wt%WC/IN718 composite and their SEM image

    图  12  WC/IN718断裂示意图

    Figure  12.  Schematic diagram of WC/IN718 fracture

    表  1  球形WC颗粒的化学成分

    Table  1.   Chemical composition of spherical WC particles wt%

    WCFeCrTiNbFree C
    Balance3.900.350.030.030.020.002
    下载: 导出CSV

    表  3  激光加工基本参数

    Table  3.   Basic parameters of laser processing

    Parameter of the laserValue
    Laser power P/W190, 200, 210
    Scanning speed v/(mm·s−1)1000
    Thickness t/mm0.03
    Scanning interval h/mm0.05
    下载: 导出CSV

    表  2  IN718合金的化学成分

    Table  2.   Chemical composition of IN718 alloy wt%

    NiCrNbMoTiCoCAlFe
    52195.52.50.80.90.050.5Bal
    下载: 导出CSV
  • [1] LI C, CHANG K, YEH A, et al. Microstructure characterization of cemented carbide fabricated by selective laser melting process[J]. International Journal of Refractory Metals and Hard Materials,2018,75:225-233. doi: 10.1016/j.ijrmhm.2018.05.001
    [2] TANJA T, JOHANNES S, RAINER V, et al. Microstructure and mechanical properties of selective laser melted Inconel 718 compared to forging and casting[J]. Materials Letters,2016,164:428-431. doi: 10.1016/j.matlet.2015.10.136
    [3] SONG J, GUO Q, OUYANG Q, et al. Influence of interfaces on the mechanical behavior of SiC particulate-reinforced Al-Zn-Mg-Cu composites[J]. Materials Science and Engi-neering: A,2015,644:79-84. doi: 10.1016/j.msea.2015.07.050
    [4] DENG L, BAI C, JIANG Z, et al. Effect of B4C particles addition on microstructure and mechanical properties of Fe50Mn30Co10Cr10 high-entropy alloy[J]. Materials Science and Engineering: A,2021,822:141642. doi: 10.1016/j.msea.2021.141642
    [5] KHORSHID M, JAHROMI S, MOSHKSAR M. Mechanical properties of tri-modal Al matrix composites reinforced by nano- and submicron-sized Al2O3 particulates developed by wet attrition milling and hot extrusion[J]. Materials & Design, 2010, 31: 3880-3884.
    [6] ALMANGOUR B, KIM Y, GRZESIAK D, et al. Novel TiB2-reinforced 316 L stainless steel nanocomposites with excellent room- and high-temperature yield strength developed by additive manufacturing[J]. Composites Part B: Engineering, 2019, 156: 51-63.
    [7] CHENC, XIE Y, YAN X, et al. Cold sprayed WC reinforced maraging steel 300 composites: Microstructure characterization and mechanical properties[J]. Journal of Alloys and Compounds,2019,785:499-511.
    [8] 高颖超, 孙书刚, 钱兵, 等. 粉末烧结法和铸造法制备ZrO2增韧Al2O3陶瓷颗粒增强高铬铸铁基复合材料及其耐磨性能[J]. 复合材料学报, 2021, 38(8):2676-2683.

    GAO Yingchao, SUN Shugang, QIAN Bing, et al. Preparation of ZrO2 toughened Al2O3 ceramic particles with enhanced high chromium cast iron-based composite material fabricated by powder sintering and casting and its wear resistance[J]. Journal of Composite Materials,2021,38(8):2676-2683(in Chinese).
    [9] 崔照雯, 李敬仁, 李泽洲, 等. 粉末冶金法CNTs、Al2O3双增强铜基复合材料性能研究[J]. 机械工程学报, 2013, 49(18):52-56. doi: 10.3901/JME.2013.18.052

    CUI Zhaowen, LI Jingren, LI Zezhou, et al. Study on the properties of CNTs and Al2O3 double-enhanced copper-based composite materials[J]. Journal of Mechanical Engineering,2013,49(18):52-56(in Chinese). doi: 10.3901/JME.2013.18.052
    [10] 王刚, 徐磊, 崔玉友, 等. TiAl预合金粉末热等静压致密化机制及热处理对微观组织的影响[J]. 金属学报, 2016, 52(9):1079-1088.

    WANG Gang, XU Lei, CUI Yuyou, et al. Ther-mal isostatic pressure compaction mechanism of TiAl pre-heated alloy powder and the effect of heat treatment on microstructure[J]. Journal of Metals,2016,52(9):1079-1088(in Chinese).
    [11] 葛福国, 彭倍, 柯文超, 等. 电弧增材制造NiTi形状记忆合金成形与性能[J]. 机械工程学报, 2020, 56(8):99-106. doi: 10.3901/JME.2020.08.099

    GE Fuguo, PENG Bei, KE Wenchao, et al. Forming and performance of NiTi shape memory alloy fabricated by arc additive manufacturing[J]. Journal of Mechanical Engineering,2020,56(8):99-106(in Chinese). doi: 10.3901/JME.2020.08.099
    [12] 杨素媛, 郭丹, 沈娟, 等. SPS制备TiNi增强镁合金复合材料的微观结构及力学性能[J]. 复合材料学报, 2018, 35(2):371-376.

    YANG Suyuan, GUO Dan, SHEN Juan, et al. Microstructure and mechanical properties of TiNi-enhanced magnesium alloy composites prepared by SPS[J]. Journal of Compo-site Materials,2018,35(2):371-376(in Chinese).
    [13] GU D, MA J, CHEN H, et al. Laser additive manufactured WC reinforced Fe-based compo-sites with gradient reinforcement/matrix interface and enhanced performance[J]. Composite Structures,2018,192:387-396. doi: 10.1016/j.compstruct.2018.03.008
    [14] MANDAL V, TRIPATHI P, KUMARR A, et al. A study on selective laser melting (SLM) of TiC and B4C reinforced IN718 metal matrix composites (MMCs)[J]. Journal of Alloys and Compounds,2022,901:163527. doi: 10.1016/j.jallcom.2021.163527
    [15] MOHAN S, MANTRI S, PANTAWANE M, et al. In situ reactions during direct laser deposition of Ti-B4C composites[J]. Scripta Materialia,2020,183:28-32. doi: 10.1016/j.scriptamat.2020.03.021
    [16] HAN C, BABICHEVA R, ZHOU K, et al. Mic-rostructure and mechanical properties of (TiB+TiC)/Ti composites fabricated in situ via selective laser melting of Ti and B4C powders[J]. Additive Manufacturing,2020,36:101466. doi: 10.1016/j.addma.2020.101466
    [17] FEREIDUNI E, GHASEMI A, ELBESTAWI M. Unique opportunities for microstructure engineering via trace B4C addition to Ti-6 Al-4 V through laser powder bed fusion process: As-built and heat-treated scenarios[J]. Additive Manu-facturing,2022,50:102557. doi: 10.1016/j.addma.2021.102557
    [18] RUEDA C, VALEIRAS E, GARDON M, et al. Effect of ZrH2 particles on the microstructure and mechanical properties of IN718 manufactured by selective laser melting[J]. Materials Science and Engineering: A,2021,813:141123. doi: 10.1016/j.msea.2021.141123
    [19] ZHANG H, GU D, MA C, et al. Effect of post heat treatment on microstructure and mechanical properties of Ni-based composites by selective laser melting[J]. Materials Science and Engineering: A,2019,765:138294. doi: 10.1016/j.msea.2019.138294
    [20] NGUYEN Q, ZHU Z, CHUA B, et al. Development of WC-Inconel composites using selective laser melting[J]. Archives of Civil and Mechanical Engineering,2018,18:1410-1420. doi: 10.1016/j.acme.2018.05.001
    [21] XIA Y, CHEN H, LIANG X, et al. Circular oscillating laser melting deposition of nickel-based superalloy reinforced by WC: Microstructure, wear resistance and electrochemical properties[J]. Journal of Manufacturing Processes,2021,68:1694-1704. doi: 10.1016/j.jmapro.2021.06.074
    [22] WANG X, PAN X, SUN P, et al. Significant enhancement in tensile strength and work hardening rate in CoCrFeMnNi by adding TiAl particles via selective laser melting[J]. Materials Science and Engineering: A,2022,831:142285. doi: 10.1016/j.msea.2021.142285
    [23] RONG T, GU D. Formation of novel graded interface and its function on mechanical properties of WC1-X reinforced Inconel 718 composites processed by selective laser melting[J]. Journal of Alloys and Compounds,2016,680:333-342. doi: 10.1016/j.jallcom.2016.04.107
    [24] YAN X, CHEN C, ZHAO R, et al. Selective laser melting of WC reinforced maraging steel 300: Microstructure characterization and tribological performance[J]. Surface and Coatings Technology,2018,371:355-365.
    [25] CAO G, SUN T, WANG C, et al. Investigations of γ', γ'' and δ precipitates in heat-treated Inconel 718 alloy fabricated by selective laser melting[J]. Materials Characterization,2018,136:398-406. doi: 10.1016/j.matchar.2018.01.006
    [26] LIN W, CHANG Y, HSU T, et al. Microstructure and tensile property of aprecipitation strengthened high entropy alloy processed by selective laser melting and post heat treat-ment[J]. Additive Manufacturing,2020,36:101601.
    [27] HO I, HSU T, CHANG Y, et al. Effects of CoAl2O4 inoculants on microstructure and mechanical properties of IN718 processed by selective laser melting[J]. Additive Manufacturing,2020,35:101328. doi: 10.1016/j.addma.2020.101328
    [28] ZHANG S, CHEN Z, WEI P, et al. Microstructure and pro-perties of a nano-ZrO2-reinforced AlSi10 Mg matrix compo-site prepared by selective laser melting[J]. Materials Science and Engineering: A,2022,838:142792. doi: 10.1016/j.msea.2022.142792
    [29] LI W, YANG X, XIAO J, et al. Effect of WC mass fraction on the microstructure and friction properties of WC/Ni60 laser cladding layer of brake discs[J]. Ceramics International,2021,47(20):28754-28763. doi: 10.1016/j.ceramint.2021.07.035
    [30] CHEN G, WAN J, HE N, et al. Strengthening mechanisms based on reinforcement distribution uniformity for particle reinforced aluminum matrix composites[J]. Transactions of Nonferrous Metals Society of China,2018,28(12):2395-2400. doi: 10.1016/S1003-6326(18)64885-X
    [31] CHEN L, GU P, GE T, et al. Effect of laser shock peening on microstructure and mechanical properties of TiC strengthened inconel 625 alloy processed by selective laser melting[J]. Materials Science and Engineering: A,2022,835:142610. doi: 10.1016/j.msea.2022.142610
    [32] TANG M, ZHANG L, ZHANG N. Microstructural evolution, mechanical and tribological properties of TiC/Ti6 Al4 V composites with unique microstructure prepared by SLM[J]. Materials Science and Engineering: A,2021,814:141187. doi: 10.1016/j.msea.2021.141187
  • 加载中
图(12) / 表(3)
计量
  • 文章访问数:  1061
  • HTML全文浏览量:  548
  • PDF下载量:  44
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-04
  • 修回日期:  2022-03-27
  • 录用日期:  2022-04-07
  • 网络出版日期:  2022-04-20
  • 刊出日期:  2023-03-15

目录

    /

    返回文章
    返回