留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氨基改性SiO2气凝胶去除Cu(II)的性能与机制

翟红侠 赵越 李超凡 孔维丽 谢发之 李海斌

翟红侠, 赵越, 李超凡, 等. 氨基改性SiO2气凝胶去除Cu(II)的性能与机制[J]. 复合材料学报, 2023, 40(8): 4618-4629
引用本文: 翟红侠, 赵越, 李超凡, 等. 氨基改性SiO2气凝胶去除Cu(II)的性能与机制[J]. 复合材料学报, 2023, 40(8): 4618-4629
ZHAI Hongxia, ZHAO Yue, LI Chaofan, KONG Weili, XIE Fazhi, LI Haibin. Performance and mechanism of the amine-modified silica aerogel for the removal of Cu(II)[J]. Acta Materiae Compositae Sinica, 2023, 40(8): 4618-4629.
Citation: ZHAI Hongxia, ZHAO Yue, LI Chaofan, KONG Weili, XIE Fazhi, LI Haibin. Performance and mechanism of the amine-modified silica aerogel for the removal of Cu(II)[J]. Acta Materiae Compositae Sinica, 2023, 40(8): 4618-4629.

氨基改性SiO2气凝胶去除Cu(II)的性能与机制

基金项目: 国家自然科学基金(52003003);安徽省矿山生态修复工程实验室开放课题(KS-2022-003);安徽省先进建筑材料国际联合研究中心基金(JZCL014 ZZ)
详细信息
    通讯作者:

    李海斌,硕士,讲师,研究方向为环境功能材料的制备及应用 E-mail: lihb@ahjzu.edu.cn

  • 中图分类号: TQ352

Performance and mechanism of the amine-modified silica aerogel for the removal of Cu(II)

Funds: National Natural Science Foundation of China(52003003);Opening Foundation of Anhui Province Engineering Laboratory for Mine;Ecological Remediation(KS-2022-003);Fund Project of Anhui Province International Research Center on Advanced Building Materials (JZCL014 ZZ)
  • 摘要: 为有效去除液相中重金属Cu(II),以正硅酸乙酯为原料,3-氨丙基三乙氧基硅烷为氨基化试剂,通过共缩聚法合成氨基改性SiO2气凝胶(NG)。系统考察pH、离子强度、时间、温度等因素对NG去除Cu(II)的影响,结合吸附动力学模型、吸附等温模型、吸附热力学、位点能量分布理论分析其吸附机制。研究结果表明,pH在3.00~6.00条件下,Cu(II)吸附量随pH升高而增大。离子强度由0 mol/L增至0.08 mol/L时,Cu(II) 吸附量受抑制作用呈逐渐降低趋势,FTIR分析显示NG与Cu(II)主要形成外层络合物。NG吸附Cu(II)时间在8 h内基本达到平衡,其吸附主要经过边界层扩散、颗粒内扩散与化学吸附等过程,且该吸附过程最符合准二级动力学模型与Freundlich模型。温度升高有利于促进吸附反应发生,Cu(II)最大吸附量达到130.45 mg/g,其吸附过程属吸热、熵增加的自发反应。位点能量分布显示随吸附反应进行,Cu(II)优先占据NG上高能量吸附位点,再占据低能量吸附位点,NG吸附Cu(II)的主要机制是外层络合与静电作用。

     

  • 图  1  氨基改性SiO2气凝胶(NG)的SEM图像和实物照(a)、表面接触角(b)、 XRD图(c)、N2吸附-脱附等温线与孔径分布曲线(d)

    Figure  1.  SEM and physical image of amine-modified silica aerogel (NG) (a), contact angle of the surface (b), XRD pattern (c), Nitrogen absorption-desorption isotherms and pore size distribution (d)

    图  2  pH对NG吸附Cu(II)的影响(ρ0=20 mg/L, I=0 mol, T=298 K,m=0.02 g, V=50 mL) (a)、水溶液中Cu(II)分布形态(b)

    Figure  2.  Effect of pH on absorption of Cu(II) by NG(ρ0=20 mg/L, I=0 mol, T=298 K, m=0.02 g, V=50 mL) (a), Speciation of Cu(II) in the system (b)

    图  3  离子强度对NG吸附Cu(II)的影响(ρ0=20 mg/L, pH=5.15, T=298 K, m=0.02 g, V=50 mL) (a)、NG吸附Cu(II)前后FTIR图谱(ρ0=20 mg/L, pH=5.15, I=0 mol, T=298 K, m=0.02 g, V=50 mL) (b)

    Figure  3.  Effect of ionic strength on absorption of Cu(II) by NG (ρ0=20 mg/L, pH=5.15, T=298 K, m=0.02 g, V=50 mL) (a), FTIR spectra of amine-modified silica aerogel before and after Cu(II) adsorption(ρ0=20 mg/L, pH=5.15, I=0 mol, T=298 K, m=0.02 g, V=50 mL) (b)

    图  4  NG吸附Cu(II)的动力学曲线(ρ0=20 mg/L, pH=5.15, I=0 mol, T=298 K, m=0.02 g, V=50 mL) (a)、颗粒内扩散模型拟合曲线(b)

    Figure  4.  Kinetic curves of Cu(II) adsorption by NG(ρ0=20 mg/L, pH=5.15, I=0 mol, T=298 K, m=0.02 g, V=50 mL) (a), Plot of intra-particle diffusion (b)

    图  5  不同等温模型对NG吸附Cu(II)的非线性拟合

    Figure  5.  Nonlinear fitting curves of Cu(II) absorption onto NG under different models

    图  6  NG吸附Cu(II)的表面溶质与溶剂之间吸附能量差(a)、位点能量分布(b)

    Figure  6.  (a)Adsorption energy difference between surface solute and solvent on NG for Cu(II) (a), Site energy distribution (b)

    图  7  XPS全谱(a)、Cu2 p精细谱(b)、N1 s精细谱(c)、C1 s精细谱(d)、O1 s精细谱(e)、Si2 p精细谱(f)Fig.7 XPS survey spectrum (a), Cu2 p fine spectrum (b), N1 s fine spectrum (c), C1 s fine spectrum (d), O1 s fine spectrum (e), Si2 p fine spectrum (f)

    图  8  NG去除Cu(II)机制

    Figure  8.  Schematic of adsorption mechanism of Cu(II) by the NG

    表  1  NG吸附Cu(II)的动力学模型参数

    Table  1.   Kinetic model parameters for Cu(II) adsorption onto NG

    Kinetic modelParameterResult
    Pseudo-first order modelqe,c/(mg·g−1)40.6704
    k1/(min−1)0.0217
    R20.9053
    Pseudo-second order modelqe,c/(mg·g−1)45.1501
    k2/(g·mg−1·min−1)0.0006
    R20.9653
    kp1; kp2/(mg·g−1·min−0.5)6.1698; 1.1281
    Intra-partical diffusion modelC1; C2−7.7112; 17.6597
    R12; R220.9760; 0.9538
    Notes:qe,c$ - $Adsorbed amount of Cu(II) at a given time and the equilibrium concentration; k1, k2 and kp$ - $Rate constans for the pseudo-first order, pseudo-second order and intraparticle diffusion, respectively; R2$ - $Coefficient of determination; C$ - $Dsorption constant.
    下载: 导出CSV

    表  2  NG吸附Cu(II)的等温模型参数

    Table  2.   Isotherm parameters of Cu(II) adsorption onto NG at varying temperatures

    Model and parameter298 K308 K318 K
    Langmuir nonlinear fit${q_{{\text{e}},{\text{c}}}}{\text{ = }}\dfrac{{7.39{\rho _{\text{e}}}}}{{1 + 0.05533{\rho _{\text{e}}}}}$$ {q_{{\text{e}},{\text{c}}}}{\text{ = }}\dfrac{{14.15{\rho _{\text{e}}}}}{{1 + 0.10868{\rho _{\text{e}}}}} $${q_{{\text{e}},{\text{c}}}}{\text{ = }}\dfrac{{16.43{\rho _{\text{e}}}}}{{1 + 0.11819{\rho _{\text{e}}}}}$
    R2
    Freundlich nonlinear fit

    R2
    Sips nonlinear fit
    R2
    Temkin nonlinear fit
    0.9913
    ${q_{{\text{e}},{\text{c}}}}{\text{ = 29}}{\text{.55}}\rho _{\text{e}}^{0.2986}$
    0.9980
    ${q_{{\text{e}},{\text{c}}}}{\text{ = }}\dfrac{{29.55{\rho _{\text{e}}}^{0.2987}}}{{1 + 0.00004{\rho _{\text{e}}}^{0.2987}}}$
    0.9976
    ${q_{{\text{e}},{\text{c}}}}{\text{ = }} - 3.86 + 25.67\ln {\rho _{\text{e}}}$
    0.9966
    ${q_{{\text{e}},{\text{c}}}}{\text{ = 47}}{\text{.55}}\rho _{\text{e}}^{0.2080}$
    0.9995
    ${q_{{\text{e}},{\text{c}}}}{\text{ = }}\dfrac{{49.26{\rho _{\text{e}}}^{0.2525}}}{{1 + 0.08598{\rho _{\text{e}}}^{0.2525}}}$
    0.9994
    ${q_{{\text{e}},{\text{c}}}}{\text{ = 27}}{\text{.97}} + 20.49\ln {\rho _{\text{e}}}$
    0.9958
    ${q_{{\text{e}},{\text{c}}}}{\text{ = 54}}{\text{.45}}\rho _{\text{e}}^{0.1942}$
    0.9997
    ${q_{{\text{e}},{\text{c}}}}{\text{ = }}\dfrac{{54.45{\rho _{\text{e}}}^{0.1942}}}{{1 + 0.00006{\rho _{\text{e}}}^{0.1942}}}$
    0.9996
    ${q_{{\text{e}},{\text{c}}}}{\text{ = }}35.97 + 20.74\ln {\rho _{\text{e}}}$
    R20.99520.99920.9990
    下载: 导出CSV

    表  3  不同种类气凝胶对Cu(II)吸附效果

    Table  3.   Cu(II) adsorption by different aerogels

    NumberSorbentReaction conditionAdsorption capacity/(mg·g-1)Reference
    1Carbon aerogelpH=7.00, T=298 K, t=10 min86.27[29]
    2MnFe2O4-Cellulose aerogelpH=6.00, T=298 K, t=100 min63.30[30]
    3Graphene oxide aerogelpH=6.30, T=313 K, t=30 min29.59[31]
    4Porous alginate aerogel beadpH=4.50,T=298 K,t=950 min126.82[32]
    5Graphene oxide/carboxymethyl chitosan aerogelpH=5.00, T=303 K,t=600 min95.37[33]
    6Amine-modified sillica aerogelpH=5.00, T=318 K, t=720 min130.45Present study
    下载: 导出CSV

    表  4  NG吸附Cu(II)的热力学参数

    Table  4.   Thermodynamic parameters for the adsorption of Cu(II) onto NG

    TKCΔG/(kJ·mol−1)ΔH/(kJ·mol−1)ΔS/(J·(mol·K)−1)
    29829550−25.5024.21167.27
    30847550−27.58
    31854450−28.83
    Notes:T—Temperature; ΔG—Gibbs free energy; ΔH—Change in enthalpy during adsorption; ΔS$ - $Adsorption process entropy change.
    下载: 导出CSV
  • [1] HUANG Y Y, ZHU S Y, WU P F, et al. Gold Nanoclusters Inhibit the Male Reproductive Toxicity of Cu2+[J]. ACS Applied Nano Materials,2021,4(12):13919-13926. doi: 10.1021/acsanm.1c03227
    [2] SHAO H, YIN D D, LI D, et al. Simultaneous Visual Detection and Removal of Cu2+ with Electrospun Self-Supporting Flexible Amidated Polyacrylonitrile/Branched Polyethyleneimine Nanofiber Membranes[J]. ACS Applied Materials & Interfaces,2021,13(41):49288-49300.
    [3] LIU S, LI J Y, OSHITA S, et al. Formation of a Hydrogen Radical in Hydrogen Nanobubble Water and Its Effect on Copper Toxicity in Chlorella[J]. ACS Sustainable Chemistry & Engineering,2021,9(33):11100-11109.
    [4] CHEE D N A, AZIZ F, AMIN M A M, et al. Copper Adsorption on ZIF-8/Alumina Hollow Fiber Membrane: A Response Surface Methodology Analysis[J]. Arabian Journal for Science and Engineering,2021,46(7):6775-6786. doi: 10.1007/s13369-021-05636-1
    [5] 林本兰, 吴兰兰, 崔升等. 新型重金属离子吸附剂的研究进展[J]. 材料导报, 2015, 29(19):18-23.

    LIN B L, WU L L, CUI S, et al. Research Progress of Novel Adsorbents of Heavy Metal Ions[J]. Materials Reports,2015,29(19):18-23(in Chinese).
    [6] CHEN Y N, LIU Y H, LI Y P, et al. Functional wastepaper-montmorillonite composite aerogel for Cd2+ adsorption[J]. Environmental Science and Pollution Research,2020,27(31):38644-38653. doi: 10.1007/s11356-020-09907-6
    [7] LI H T, ZHANG L J, CHEN J H, et al. Reduced graphene oxide based aerogels: Doped with ternary Prussian blue analogs and selective removal of Cs+ from effluent[J]. Journal of Water Process Engineering,2022,47:1-12.
    [8] JING L M, YANG S, LI X, et al. Effective adsorption and sensitive detection of Cr6+ by degradable collagen-based porous fluorescent aerogel[J]. Industrial Crops & Products,2022,182:1-9.
    [9] EHGARTNER C R, WERNER V, SELZ S, et al. Carboxylic acid-modified polysilsesquioxane aerogels for the selective and reversible complexation of heavy metals and organic molecules[J]. Microporous and Mesoporous Material,2021,312:1-11.
    [10] 张明. 增强改性 SiO2气凝胶复合材料的研究进展[J]. 复合材料学报, 2020, 37(11):2674-2683.

    ZHANG Ming. Research progress of reinforced SiO2 aerogel composites[J]. Acta Materiae Compositae Sinica,2020,37(11):2674-2683(in Chinese).
    [11] 刘双, 张洋, 张天蒙, 等. 氨基功能化纳米纤维素气凝胶的制备及性能[J]. 复合材料学报, 2018, 35(11):3180-3188. doi: 10.13801/j.cnki.fhclxb.20180316.004

    LIU Shuang, ZHANG Yang, ZHANG Tianmeng, et al. Acta Materiae Compositae Sinica,2018,35(11):3180-3188(in Chinese). doi: 10.13801/j.cnki.fhclxb.20180316.004
    [12] HASSANZADEH-AFRUZI F, ESMAILZADEHs F, ASGHARNASL S, et al. Efficient removal of Pb (II)/Cu (II) from aqueous samples by a guanidine-functionalized SBA-15/Fe3O4[J]. Separation and Purification Technology,2022,291:1-15.
    [13] SINGH S, KAPOOR D, KHASNABIS S, et al. Mechanism and kinetics of adsorption and removal of heavy metals from wastewater using nanomaterials[J]. Environmental Chemistry Letters,2021,19(3):2351-2381. doi: 10.1007/s10311-021-01196-w
    [14] WADHAWAN S, JAIN A, NAYYAR J, et al. Role of nanomaterials as adsorbents in heavy metal ion removal from waste water: A review[J]. Journal of Water Process Engineering,2020,33:1-17.
    [15] Li J, ZHANG S, CHEN C, et al. Removal of Cu (II) and fulvic acid by graphene oxide nanosheets decorated with Fe3O4 nanoparticles[J]. ACS applied materials & interfaces,2012,4(9):4991-5000.
    [16] 吴志坚, 刘海宁, 张慧芳. 离子强度对吸附影响机理的研究进展[J]. 环境化学, 2010(6):997-1003.

    WU Zhijian, LIU Haining, ZHANG Huifang. Research progress on mechanisms about the effect of ionic strength on adsorption[J]. Environmental Chemistry,2010(6):997-1003(in Chinese).
    [17] 张晋京, 王帅, 窦森, 等. 土壤粗胡敏素对铜离子的吸附作用及其影响因素[J]. 环境科学学报, 2008, 28(12):2527-2533. doi: 10.3321/j.issn:0253-2468.2008.12.020

    ZHANG J J, WANG S, DOU S, et al. Adsorption of copper(Ⅱ) on crude humin from soils[J]. Acta ScientiaeCircumstantiae,2008,28(12):2527-2533(in Chinese). doi: 10.3321/j.issn:0253-2468.2008.12.020
    [18] HAYES K, PAPELIS C, LECKIE J. Modeling ionic strength effects on anion adsorption at hydrous oxide/solution interfaces[J]. Journal of Colloid and Interface Science,1988,125(2):717-726. doi: 10.1016/0021-9797(88)90039-2
    [19] PEAK D, FORD R G, SPARKS D L. An in situ ATR-FTIR investigation of sulfate bonding mechanisms on goethite[J]. Journal of colloid and interface science,1999,218(1):289-299. doi: 10.1006/jcis.1999.6405
    [20] 刘秀芸, 王刚, 雷雨昕等. 巯基改性玉米秸秆对水中Cu(II)的吸附特性[J]. 中国环境科学, 2022, 42(3):1220-1229. doi: 10.3969/j.issn.1000-6923.2022.03.027

    LIU X Y, WANG G, LEI Y X, et al. Adsorption performance and mechanism of mercaptoacetyl corn straw for Cu(II) in aqueous solution[J]. China Environmental Science,2022,42(3):1220-1229(in Chinese). doi: 10.3969/j.issn.1000-6923.2022.03.027
    [21] TRAN H N, YOU S J, HOSSEINI-BANDEGHARAEI A, et al. Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions: A critical review[J]. Water Research,2017,120:88-116. doi: 10.1016/j.watres.2017.04.014
    [22] 李海斌, 张克华, 陈庆典等. 氨基磷酸螯合树脂(D418)高效去除Cu(II)的性能与机制[J]. 复合材料学报, 2021, 38(4):1128-1138.

    LI H H, ZHANG K H, CHEN Q D, et al. Performance and mechanism of the amino methylene phosphonic acid chelating resin(D418)for the efficient removal of Cu(II)[J]. Acta Materiae Compositae Sinica,2021,38(4):1128-1138(in Chinese).
    [23] LIU Y, CHEN Q, SINGH R P. Low-Cost RSAC and Adsorption Characteristics in the Removal of Copper Ions from Wastewater[J]. Applied Sciences,2022,12(11):1-16.
    [24] LIU J L, BECKERMAN J. Application of sustainable biosorbents from hemp for remediation copper (II)-containing wastewater[J]. Journal of Environmental Chemical Engineering,2022,10(3):1-12.
    [25] MOUBAYED N M S, AL-HOURI H J. Characterization of adsorption ability of spirulina platensis for copper ions removal from aqueous solutions[J]. Desalination and Water Treatment,2022,250:118-125. doi: 10.5004/dwt.2022.28111
    [26] WANG R H, ZOU H Y, ZHENG R J, et al. Molecular dynamics beyond the monolayer adsorption as derived from langmuir curve fitting[J]. Inorganic Chemistry,2022,61(20):7804-7812. doi: 10.1021/acs.inorgchem.2c00301
    [27] MORADI H, AZIZPOUR H, BAHMANYAR H, et al. Molecular dynamic simulation of carbon dioxide, methane, and nitrogen adsorption on Faujasite zeolite[J]. Chinese Journal of Chemical Engineering,2022,43:70-76. doi: 10.1016/j.cjche.2021.05.034
    [28] LI X D, WEN B A, LI Y J. Adsorption of the Malachite Green by Magnetic Clam Shell Powder[J]. Polish Journal of Environmental Studies,2021,31(1):717-726.
    [29] LI J, ZHENG L, LIU H B. A novel carbon aerogel prepared for adsorption of copper(II) ion in water[J]. Journal of Porous Materials,2017,24(6):1575-1580. doi: 10.1007/s10934-017-0397-y
    [30] CUI S, WANG X, ZHANG X, et al. Preparation of magnetic MnFe2O4-Cellulose aerogel composite and its kinetics and thermodynamics of Cu(II) adsorption[J]. Cellulose,2018,25(1):735-751. doi: 10.1007/s10570-017-1598-x
    [31] MI X, HUANG G B, XIE W S, et al. Preparation of graphene oxide aerogel and its adsorption for Cu2+ ions[J]. Carbon,2012,50(13):4856-4864. doi: 10.1016/j.carbon.2012.06.013
    [32] DEZE E G, PAPAGEORGIOU S K, FAVVAS E P, et al. Porous alginate aerogel beads for effective and rapid heavy metal sorption from aqueous solutions: Effect of porosity in Cu2+ and Cd2+ ion sorption[J]. Chemical Engineering Journal,2012,209:537-546. doi: 10.1016/j.cej.2012.07.133
    [33] LUO J Q, FAN C J, XIAO Z, et al. Novel graphene oxide/carboxymethyl chitosan aerogels via vacuum-assisted self-assembly for heavy metal adsorption capacity[J]. Colloids and Surfaces a-Physicochemical and Engineering Aspects,2019,578:1-11.
    [34] LOMBARDO S, THIELEMANS W. Thermodynamics of adsorption on nanocellulose surfaces[J]. Cellulose,2019,26(1):249-279. doi: 10.1007/s10570-018-02239-2
    [35] KUMAR I A, JEYAPRABHA C, VISWANATHAN N. Effect of polyvalent metal ions encrusted biopolymeric hybrid beads on nitrate adsorption[J]. Journal of Environmental Chemical Engineering,2020,8(4):1-11.
    [36] XIA C F, HUANG H H, LIANG D R, et al. Adsorption of tetracycline hydrochloride on layered double hydroxide loaded carbon nanotubes and site energy distribution analysis[J]. Chemical Engineering Journal,2022,443:1-10.
    [37] ZHAO F, ZHANG Y, ZHENG Z L, et al. Synthesis of an absorption material based on oil shale semi-coke: Discussion to adsorption mechanism and corresponding site energy distribution analysis[J]. Colloids and Surfaces a-Physicochemical and Engineering Aspects,2022,637:1-10.
    [38] BERGER J M, WINAND R. Solubilities, densities, and electrical conductivities of aqueous copper(I) and copper(II) chlorides in solutions containing other chlorides such as iron, zinc, sodium and hydrogen chlorides[J]. Hydrometallurgy,1984,12(1):61-81. doi: 10.1016/0304-386X(84)90048-3
    [39] 蒋晖, 刘秀丽, 孙娇霞等. BPA和EE2在PA微塑料上竞争吸附的位点能量[J]. 中国环境科学, 2021, 41(12):5736-5746. doi: 10.3969/j.issn.1000-6923.2021.12.030

    JIANG H, LIU X L, SUN J X, et al. Competitive adsorption characteristics of BPA and EE2 on PA microplastics by site energy distribution theory[J]. China Environmental Science,2021,41(12):5736-5746(in Chinese). doi: 10.3969/j.issn.1000-6923.2021.12.030
    [40] BELACHEW N, BEKELE G. Synergy of Magnetite Intercalated Bentonite for Enhanced Adsorption of Congo Red Dye[J]. Silicon,2020,12(3):603-612. doi: 10.1007/s12633-019-00152-2
    [41] ZHOU Y Y, HE Y Z, XIANG Y J, et al. Single and simultaneous adsorption of pefloxacin and Cu(II) ions from aqueous solutions by oxidized multiwalled carbon nanotube[J]. Science of the Total Environment,2019,646:29-36. doi: 10.1016/j.scitotenv.2018.07.267
    [42] XU L, LIU Y N, WANG J G, et al. Selective adsorption of Pb2+ and Cu2+ on amino-modified attapulgite: Kinetic, thermal dynamic and DFT studies[J]. Journal of Hazardous Materials,2021,404:1-10.
    [43] ZHOU T Z, LI C P, JIN H L, et al. Effective Adsorption/Reduction of Cr(VI) Oxyanion by Halloysite@Polyaniline Hybrid Nanotubes[J]. ACS Applied Materials & Interfaces,2017,9(7):6030-6043.
    [44] SHAO Z D, CHENG X, ZHENG Y M. Facile co-precursor sol-gel synthesis of a novel amine-modified silica aerogel for high efficiency carbon dioxide capture[J]. Journal of Colloid Interface Science,2018,530:412-423. doi: 10.1016/j.jcis.2018.06.094
    [45] WANG J H, ZHANG D, LIU S C, et al. Enhanced removal of chromium(III) for aqueous solution by EDTA modified attapulgite: Adsorption performance and mechanism[J]. Science of The Total Environment,2020,720:1-8.
    [46] ZHANG L B, ZHANG G W, WANG S X, et al. Sulfoethyl functionalized silica nanoparticle as an adsorbent to selectively adsorb silver ions from aqueous solutions[J]. Journal of the Taiwan Institute of Chemical Engineers,2017,71:330-337. doi: 10.1016/j.jtice.2017.01.001
    [47] LI H, XIAO D L, HE H, et al. Adsorption behavior and adsorption mechanism of Cu(II) ions on amino-functionalized magnetic nanoparticles[J]. Transactions of Nonferrous Metals Society of China,2013,23(9):2657-2665. doi: 10.1016/S1003-6326(13)62782-X
  • 加载中
图(8) / 表(4)
计量
  • 文章访问数:  209
  • HTML全文浏览量:  127
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-11
  • 修回日期:  2022-09-05
  • 录用日期:  2022-09-17
  • 网络出版日期:  2022-10-12
  • 刊出日期:  2023-08-15

目录

    /

    返回文章
    返回