Processing math: 100%

纤维素-海藻酸钠-海泡石多孔微球的制备及其对亚甲基蓝吸附性能

李婷婷, 李瑞雪, 马政, 杨安廷, 焦晨璐, 王健

李婷婷, 李瑞雪, 马政, 等. 纤维素-海藻酸钠-海泡石多孔微球的制备及其对亚甲基蓝吸附性能[J]. 复合材料学报, 2021, 38(12): 4273-4281. DOI: 10.13801/j.cnki.fhclxb.20210310.002
引用本文: 李婷婷, 李瑞雪, 马政, 等. 纤维素-海藻酸钠-海泡石多孔微球的制备及其对亚甲基蓝吸附性能[J]. 复合材料学报, 2021, 38(12): 4273-4281. DOI: 10.13801/j.cnki.fhclxb.20210310.002
LI Tingting, LI Ruixue, MA Zheng, et al. Preparation of cellulose-sodium alginate-sepiolite porous bead and its application in adsorption of methylene blue[J]. Acta Materiae Compositae Sinica, 2021, 38(12): 4273-4281. DOI: 10.13801/j.cnki.fhclxb.20210310.002
Citation: LI Tingting, LI Ruixue, MA Zheng, et al. Preparation of cellulose-sodium alginate-sepiolite porous bead and its application in adsorption of methylene blue[J]. Acta Materiae Compositae Sinica, 2021, 38(12): 4273-4281. DOI: 10.13801/j.cnki.fhclxb.20210310.002

纤维素-海藻酸钠-海泡石多孔微球的制备及其对亚甲基蓝吸附性能

基金项目: 国家自然科学基金青年基金(51803004);安徽省高校自然科学研究项目(KJ2017A144);安徽农业大学人才项目(yj2018-18)
详细信息
    通讯作者:

    王健,硕士,副教授,硕士生导师,研究方向为生物质基复合材料 E-mail:silkwj@ahau.edu.cn

  • 中图分类号: TQ340.1

Preparation of cellulose-sodium alginate-sepiolite porous bead and its application in adsorption of methylene blue

  • 摘要: 以微晶纤维素(Microcrystalline cellulose,MCC)和海藻酸钠(Sodium alginate,SA)为网络框架,海泡石(Sepiolite,SEP)为功能单元,采用悬浮液滴法构建纤维素-海藻酸钠-海泡石(MCC-SA-SEP)双网络多孔复合微球。通过SEM和TG对复合微球结构和热稳定性能进行表征,并研究该微球对亚甲基蓝(Methylene blue,MB)水溶液的吸附性能。结果表明,MCC-SA-SEP复合微球呈现三维网络多孔结构,且随着SEP含量的增加热稳定性逐渐提高。吸附结果显示MCC-SA-SEP符合准二级动力学模型和Langmuir等温线,对MB的饱和吸附容量高达333.3 mg/g。经过五次再生循环后,对MB吸附能力仍能维持85.4%,表明该多孔复合微球可以作为一种高效可再生的有机-无机复合吸附剂用于染料废水处理。
    Abstract: Double network composite beads (MCC-SA-SEP) were synthesized by a floating droplet method, in which microcrystalline cellulose (MCC) and sodium alginate (SA) worked as the network frameworks, and sepiolite (SEP) was a functional component. The microstructure and thermal properties of the as-prepared MCC-SA-SEP beads were characterized by SEM and TG, respectively, and the adsorption performance for methylene blue (MB) aqueous solution was studied. The results present that the MCC-SA-SEP beads have three-dimensional porous structures, and the thermal stability increases gradually with the increasing of SEP contents. The adsorption process of MCC-SA-SEP follows the pseudo-second-order kinetic model and Langmuir isotherm, with the maximum adsorption capacity of 333.3 mg/g for MB. After five regeneration cycles, the adsorption capacity could still retain 85.4% of the initial adsorption amount, demonstrating a novel organic-inorganic hybrid adsorbent for dye waste water treatment.
  • 随着现代工业和经济的迅速发展,印染、合成、皮革、电镀、化妆品等行业产生大量染料废水,因其色度高、毒性强而备受关注[1-2]。吸附是去除废水中化学和生物稳定污染物的重要技术之一,而天然高分子基微球吸附剂既具备天然高分子可生物降解、生物相容性好及无毒无害无污染的性能同时又拥有微球的特性(如孔隙率高、比表面积大等),在工业废水吸附方面应用广泛[3-5]

    微晶纤维素(Microcrystalline cellulose,MCC)作为最丰富的天然可再生资源之一,主要来源于木材、棉花、麻、谷类植物和其他高等植物。MCC是由很多ᴅ-吡喃葡萄糖彼此以β-1, 4糖苷键连接而成的线型大分子多糖,可用于构建多孔结构的微球[6]。然而每个葡萄糖单元含有3个可供反应的羟基,其分子链间易形成大量氢键,且结晶度高,导致其吸附容量有限[7]。此外,纯纤维素微球的机械强度较低,阻碍了其广泛应用。常用的改进方法包括表面化学改性和复合增强等[6]

    海藻酸钠(Sodium alginate,SA)是一种储量丰富、可再生、对环境友好的天然阴离子多糖,分子链富含羧基等阴离子基团[8]。报导显示,SA-纤维素复合微球用于污染物的去除具有显著效果。例如Hu Zhao-Hong等[9]采用交联法制备了芳基化纤维素纳米晶-SA水凝胶微球,该复合微球对Pb(II)的吸附率达到76%。李延庆等[10]采用溶胶凝胶转相法制备系列SA/纤维素复合微球,当SA质量分数为20wt%时,对磷酸根的吸附性能最强,吸附效率高达85.58%。

    海泡石(Sepiolite,SEP)是一种储量丰富的天然纤维状含镁水合硅酸盐粘土,理想分子式为[Si12Mg8O30(H2O)4·8H2O],具有横截面积为0.36 nm×10.6 nm的管状贯穿通道及高达900 m2·g−1的理论比表面积,仅次于活性炭,是目前比表面积最大的天然无机矿物质[11]。SEP巨大的比表面积和高吸附性能,可与MCC及SA产生协同增效和互补作用,用于提高微球吸附容量。

    本研究选取MCC和SA为网络框架,SEP为功能组分,构建双网络复合微球纤维素-海藻酸钠-海泡石(MCC-SA-SEP)。采用SEM、TG对MCC-SA-SEP进行表征,研究各实验变量对多孔复合微球吸附行为的影响,为利用储量丰富的天然高分子资源及矿物质材料制备多功能有机-无机复合吸附剂用于染料废水处理提供新思路。

    微晶纤维素(MCC),粒径65 μm,麦克林试剂;海藻酸钠(SA),低黏度(北京百灵威科技有限公司);海泡石(SEP),(上海泰坦科技股份有限公司);尿素、NaOH、CaCl2、HCl,均为分析纯(国药集团化学试剂有限公司);亚甲基蓝(Methylene blue,MB),分析纯,麦克林试剂。

    将一定量的SEP加入到30wt%的HCl溶液中,磁力搅拌6 h后,用蒸馏水将其洗涤至中性,干燥备用。SEP预处理目的:SEP纤维具有独特的结构,吸附性很强,对色度有较好的去除效果,且有较好的离子交换能力,但天然SEP杂质含量较大,易堵塞孔道,导致性能不佳,需要进行改性处理提高它的应用价值。对天然SEP纤维进行酸处理,改善SEP纤维的表面特性,可使吸附性达到最佳[12]。酸活化处理过程中,一些可溶于酸的杂质被去除,SEP纤维中大量的Mg2+会被H+取代,产生更多的活性吸附位点,且—Si—O—Mg—O—Si—基团在酸性条件下断裂,生成2个—Si—OH基团,具有更强的吸附活性[13]

    配制质量分数为7wt%/12wt%的NaOH/尿素溶液,预冷至−12℃,加入2 g的MCC,快速搅拌均匀,再冷冻12 h后室温自然融化,得到透明的MCC溶液。SA溶液的配置同上。将50 mL的MCC溶液和50 mL的SA溶液在室温下混合得到MCC-SA复合溶液;加入一定量预处理的SEP,室温下搅拌均匀后;通过注射器将悬浮液滴入含有5wt% CaCl2的HCl溶液中,固化一夜后,将获得的复合水凝胶微球过滤并浸入去离子水中脱酸至中性;随后冷冻干燥得到微晶纤维素-海藻酸钠-海泡石(MCC-SA-SEP)多孔复合微球,并记作MCC-SA-SEP-21(MCC-SA与SEP质量比为2∶1)。为了对比,采用相同的方法合成了不同SEP含量的多孔复合微球MCC-SA-SEP-0、MCC-SA-SEP-41和MCC-SA-SEP-11 (如表1所示)。

    表  1  不同SEP含量制备的微晶纤维素-海藻酸钠-海泡石(MCC-SA-SEP)复合微球
    Table  1.  Microcrystalline cellulose-sodium alginate-sepiolite (MCC-SA-SEP) composite beads prepared with various SEP contents
    MCC-SA content/gSEP content/gComposite bead
    2 0 MCC-SA-SEP-0
    2 0.5 MCC-SA-SEP-41
    2 1 MCC-SA-SEP-21
    2 2 MCC-SA-SEP-11
    下载: 导出CSV 
    | 显示表格

    采用S-4800型扫描电子显微镜(日本日立公司)观察样品微观形态;采用SDTQ600 TG/DSC热分析仪(美国TA设备公司)在N2保护下以10℃/min的升温速率从25℃升温至600℃,观察样品的失重率。

    将0.1 g MCC-SA-SEP投入到100 mL 500 mg·L−1的MB溶液中,在303 K震荡吸附一定时间后,采用UV-4802S型紫外-可见分光光度计(上海尤尼柯公司)测定上清液在最大吸收波长664 nm处的吸光度(标准曲线方程为y=0.0631x−0.163,R2=0.9992),根据以下公式计算吸附量Qt。通过控制变量,探究MB初始浓度、温度、吸附时间等因素对吸附效果的影响:

    Qt=(C0Ct)Vm (1)

    式中:Qt为吸附时间t对应的MB的吸附量(mg·g−1);C0Ct分别为MB溶液的初始浓度和吸附时间t对应的浓度(mg·L−1);V为MB溶液的体积(L);m为MCC-SA-SEP复合微球的质量(g)。

    将吸附MB后的MCC-SA-SEP多孔复合微球用0.1 mol·L−1的HCl水溶液进行脱附,而后置于500 mg·L−1的MB溶液中再次进行吸附,重复5次,得到每次的吸附量。

    不同SEP含量的系列复合微球MCC-SA-SEP-0、MCC-SA-SEP-41、MCC-SA-SEP-21和MCC-SA-SEP-11的微观形貌如图1所示。可知,MCC-SA-SEP复合微球均呈现出网络多孔结构,有利于染料分子的吸附和传递。随着SEP含量的提高,多孔结构中微纳米颗粒逐渐增加,这是典型的SEP结构特征。此外,MCC-SA-SEP-0为片层堆积的网络结构,随着SEP含量提高,微球内部的孔数量不断增加,孔径逐渐由几百微米缩小至几十微米,这主要是由于微纳米级的SEP颗粒破坏了MCC和SA组成的双网络结构的孔壁,使其由连续的“长条型”的孔隙结构逐渐过渡为三维网络互穿结构。然而,当SEP含量增加至MCC-SA与SEP的质量比为1∶1时(图1(d)图1(e)),相同实验条件下成球效果较差,这是由于过量的SEP会引起孔隙结构的过度破坏,造成复合微球出现塌陷和破裂[14]。因此,从微观结构分析,MCC-SA-SEP-21多孔复合微球是最优的。

    图  1  不同SEP含量的MCC-SA-SEP复合微球的SEM图像
    Figure  1.  SEM images of MCC-SA-SEP beads with different SEP contents

    为进一步分析SEP对复合微球的热学性能的影响,MCC、SA、SEP及MCC-SA-SEP多孔复合微球的热失重曲线如图2所示。可知,MCC-SA-SEP的残留率比MCC和SA高,且随着热稳定性较高的SEP含量的增加,复合微球的热稳定性逐渐提高。MCC-SA-SEP多孔复合微球的热解主要分为3个阶段:第一阶段即当温度在25~200℃范围内,微球热解速率较平缓,这是由于MCC-SA-SEP多孔复合微球部分的自由水及表面结合水的蒸发所引起;第二阶段是在200~350℃范围内,热解速率显著增加,复合微球分子内的—OH脱水及微球中部分糖苷键断裂,发生脱羧反应,并且断键的化合物会发生化学键的重排,组成一系列新的中间产物[15-16];第三阶段是在350℃后,可能是高温下MCC-SA-SEP多孔复合微球中间产物继续分解及部分碳化造成,其热解速率逐渐趋于平缓状态。MCC-SA-SEP-11和MCC-SA-SEP-21的失重率分别为32.58wt%和32.82wt%,热稳定性没有明显的提高,结合复合微球的微观形貌,因此选择MCC-SA-SEP-21多孔复合微球进行后续吸附试验。

    图  2  MCC、SA、SEP及MCC-SA-SEP复合微球的TG曲线
    Figure  2.  TG curves of MCC, SA, SEP and MCC-SA-SEP beads

    图3为MCC-SA-SEP微球用量和溶液pH对吸附性能的影响。可知,随着吸附剂用量的增加,MCC-SA-SEP微球的吸附容量逐渐降低。这是由于微球中吸附位点的利用率随着投入量的增加而下降,导致单位质量的微球对MB分子的吸附量减少[17]。与之相反,吸附量随着pH的增加而提高。在酸性条件下,MCC-SA-SEP多孔复合微球表面过量的H+与MB分子竞争,使微球吸附量较低[18]。当处于碱性环境中,MCC-SA-SEP多孔复合微球被去质子化,与阳离子型MB分子之间产生静电吸引,使其吸附量逐渐增加[19]

    图  3  MCC-SA-SEP-21微球投入量和溶液pH对吸附性能的影响
    Figure  3.  Effect of MCC-SA-SEP-21 beads dosage and pH on the adsorption properties

    吸附动力学是分析吸附机制、掌握吸附过程的重要手段,为实际应用提供有价值的实验参数。图4为吸附时间对MCC-SA-SEP-21多孔复合微球吸附性能的影响。显然,随着吸附时间的延长,多孔复合微球对MB的吸附量先迅速增加后增速变缓,直到吸附达到平衡(300 min左右)。这是由于在吸附开始时,微球表面存在大量空白吸附位点,MB分子在微球表面被迅速附着。随着时间的增加,表面吸附位点逐渐被占据,MB分子必须克服巨大的阻力深入到复合微球内部与吸附位点结合,使吸附速率下降,吸附量增速变缓,直至吸附平衡[20]。因此后续试验的吸附时间选定为300 min。

    图  4  吸附时间对MCC-SA-SEP-21复合微球吸性能的影响
    Figure  4.  Effect of time on the adsorption performance of MCC-SA-SEP-21 beads

    为了更好地理解吸附行为,采用准一级和准二级动力学模型[21-22]。对MCC-SA-SEP微球的吸附行为进行分析,拟合曲线如图5所示。准一级和准二级动力学模型的线性形式分别由以下公式表示:

    图  5  MCC-SA-SEP-21复合微球吸附亚甲基蓝(MB)的动力学模型拟合曲线
    Figure  5.  Kinetic fitting curves of adsorption data of methylene blue (MB) onto MCC-SA-SEP-21 beads
    Qe—Equilibrium adsorption on MB; Qt—Adsorption time t corresponds to the adsorption capacity of MB
    ln(Q1eQt)=lnQ1ek1t (2)
    tQt=tQ2e+1k2Q2e2 (3)

    式中:Q1eQ2e分别是由准一级和准二级动力学模型方程估算的饱和吸附容量(mg·g−1);k1k2分别是准一级(min−1)和准二级(g·mg−1·min−1)动力学模型的速率常数。

    表2为MCC-SA-SEP-21多孔微球吸附MB的动力学模型拟合结果。可知,准二级动力学过程的相关系数较高,R2为0.9967,并且由其拟合得到的平衡吸附量Qe(cal)与实际吸附量Qe(exp)更接近,拟合度更高,表明MCC-SA-SEP多孔复合微球吸附过程更符合准二级动力学方程,因此可以利用准二级动力学方程来预测不同时间条件下的饱和吸附量及最大吸附量。

    表  2  MCC-SA-SEP-21多孔复合微球吸附MB的动力学模型拟合参数
    Table  2.  Parameters of kinetic adsorption models for MB onto MCC-SA-SEP-21 beads
    AdsorbateQe(exp)/(mg·g−1)Pseudo-first-order modelPseudo-second-order model
    Q1e(cal)/(mg·g−1)k1/(min−1)R2Q2e(cal)/(mg·g−1)k2/(g·mg−1·min−1)R2
    MB 306.7 199.3 1.06×10−2 0.9855 322.6 9.1×10−5 0.9967
    Notes: k1, k2—Pseudo-first-order kinetic and Pseudo-second-order kinetic constants, respectively; Qe(cal)—Calculation amount of MB removed per unit mass of adsorbent; Qe(exp)—Experimental amount of MB removed per unit mass of adsorbent.
    下载: 导出CSV 
    | 显示表格

    通过静态吸附实验,测定不同初始浓度对MCC-SA-SEP-21多孔复合微球吸附容量的影响,其结果如图6所示。可知,随着MB初始浓度的增加,MCC-SA-SEP-21对MB的吸附量也逐渐提高,这是由于随着MB浓度的增加,复合微球表面与溶液间的浓度梯度增大,MB扩散的驱动力也随之增强,MB与复合微球之间的有效碰撞机率提高,使吸附量增大。当复合微球的活性位点吸附达到饱和时,吸附量趋于平衡[23-24]

    图  6  不同初始浓度的MB对MCC-SA-SEP-21复合微球吸附性能的影响
    Figure  6.  Effect of initial concentrations of MB on the adsorption capacities of MCC-SA-SEP-21 beads

    采用Langmuir和Freundlich等温吸附模型[25]对实验数据进行拟合分析,结果如图7表3所示。Langmuir和Freundlich等温吸附模型的线性形式分别由以下公式表示:

    图  7  MCC-SA-SEP-21复合微球的Langmuir等温吸附 (a) 和Freundlich等温吸附拟合曲线 (b)
    Figure  7.  Langmuir model fitting curve (a) and Freundlich model fitting curve (b) for MCC-SA-SEP-21 beads
    表  3  MCC-SA-SEP-21复合微球对MB的吸附等温拟合结果
    Table  3.  Isothermal parameters for the adsorption of MB onto MCC-SA-SEP-21 beads
    AdsorbateLangmuirFreundlich
    Qmax/(mg·g−1)kL/(L·mg−1)R2kF/(L·mg−1)nR2
    MB 333.3 0.147 0.9985 112 5 0.8949
    Notes: Qmax—Langmuir adsorption maximum; kL—Langmuir coefficient of distribution of the adsorption; kF—Freundlich coefficient of distribution of the adsorption; n—Freundlich constants related to adsorption strength.
    下载: 导出CSV 
    | 显示表格
    CeQe=CeQm+1kLQm (4)
    lnQe=lnkF+lnCen (5)

    式中:QeQm分别为MCC-SA-SEP复合微球对MB的平衡吸附量与最大单层吸附量(mg·g−1);Ce为吸附达到平衡时MB浓度(mg·L−1);kL为Langmuir等温常数(L·mg−1);kFn分别为Freundlich等温常数(L·mg−1)和非均相系数。

    图7表3可知,Freundlich等温吸附模型的线性相关系数只有0.8949,远低于Langmuir模型的0.9985,表明Langmuir吸附等温线模型能更好地描述MCC-SA-SEP多孔复合微球对MB的吸附过程,且最大单层吸附容量高达333.3 mg·g−1

    与报道的纤维素复合微球吸附剂相比,其结果如表4所示,MCC-SA-SEP的吸附性能突出,该吸附容量的提高可归因于MCC和SA构成的双网络结构和SEP高饱和吸附性能的协同作用。

    表  4  同类纤维素复合微球吸附剂对MB的吸附容量对比
    Table  4.  Adsorption capacity ratio of similar cellulose composite beads adsorbents to MB
    AdsorbentAdsorption capacity/(mg·g−1)Reference
    SA/cellulose hydrogel beads 163.36 [26]
    Cellulose/diatomite composite aerogel beads 71.9424 [27]
    MCDBs 117.65 [14]
    CMC-AlG/GO hydrogels beads 78.5 [28]
    CNC-ALG 255.5 [29]
    CNC/MnO2/ALG beads 136.7 [30]
    MCC-SA-SEP 333.3 This work
    Notes: GO—Graphene oxide; MCDBs—Modified cellulose/diatomite beads; CMC—Carboxymethyl cellulose; CNC—Cellulose nanocrystal; ALG—Alginate.
    下载: 导出CSV 
    | 显示表格

    热力学的概念是假设在一个孤立系统中,能量不能被添加或损失,熵变ΔSo是唯一的驱动力[31]。利用Van’t Hoff方程[32](如下列各式所示)探讨了MCC-SA-SEP复合微球在温度分别为303 K、308 K、313 K、318 K、332 K的条件下对MB的吸附过程,热力学研究结果如图8表5所示:

    ΔGo=RTlnKc (6)
    lnKc=ΔSoRΔHoRT (7)
    Kc=QeCe (8)

    式中:ΔGo为吸附过程的吉布斯自由能变化(kJ·mol−1);ΔHo和ΔSo分别为吸附过程的焓变(kJ·mol−1)与熵变(J·mol−1·K−1);Kc为吸附平衡常数。RT分别为气体摩尔常数(8.314/J·mol−1·K−1)和温度(K)。

    图  8  MCC-SA-SEP-21复合微对MB的吸附热力学拟合曲线
    Figure  8.  Thermodynamic fitting curve of MB onto MCC-SA-SEP-21 beads
    Kc—Adsorption equilibrium constant

    表5所示,MCC-SA-SEP复合微球的吸附焓变ΔHo为−22 kJ·mol−1,表明吸附过程为放热反应。一般情况下,物理吸附的ΔHo的绝对值在2.1~20.9 kJ·mol−1之间,化学吸附在80~200 kJ·mol−1之间,由此可判断MCC-SA-SEP复合微球对MB的吸附既有物理吸附又有化学吸附[33-34]。在不同温度下MCC-SA-SEP复合微球吸附MB的ΔGo都小于0,表明MCC-SA-SEP复合微球对MB的吸附过程是自发的。此外,ΔSo小于0说明MCC-SA-SEP复合微球对MB的吸附过程是一个熵减小的过程,即随着吸附反应的进行复合微球表面的混乱度逐渐降低。

    表  5  MCC-SA-SEP-21复合微球对MB的吸附热力学参数
    Table  5.  Thermodynamic parameters for the adsorption of MB onto MCC-SA-SEP-21 beads
    T/KΔGo/(kJ·mol−1)ΔHo/(kJ·mol−1)ΔSo/(J·mol−1·K−1)
    303 −2.1 −22 −66.1
    308 −1.6
    313 −1.2
    318 −1
    323 −0.7
    Notes: ΔGo—Gibbs free energy variation of the adsorption process; ΔHo—Enthalpy change of the adsorption process; ΔSo—Entropy change of the adsorption process.
    下载: 导出CSV 
    | 显示表格

    可再生性能是决定吸附剂能够可持续应用的重要前提。图9为MCC-SA-SEP-21复合微球的再生性。可知,经过5次连续吸附-脱附循环后,MCC-SA-SEP复合微球对MB的吸附量仍能维持初始吸附量的85.4%,说明MCC-SA-SEP复合微球具有良好的可重复使用性能,是一种稳定、高效且可重复利用的材料,在染料吸附及水处理领域有着潜在的应用前景。

    图  9  MCC-SA-SEP-21复合微球的再生性
    Figure  9.  Regeneration property of MCC-SA-SEP-21 beads

    (1) 采用悬浮液滴法可制备出纤维素-海藻酸钠-海泡石(MCC-SA-SEP)多孔复合微球,其微观形貌呈现出三维网络多孔结构,且随着海泡石(Sepiolite,SEP)含量的增加,MCC-SA-SEP多孔复合微球的热稳定性逐渐提高。

    (2) 吸附实验显示,MCC-SA-SEP多孔复合微球对亚甲基蓝(MB)展现出良好的吸附性能,且吸附过程符合准二级动力学模型和Langmuir等温模型,是一种自发的放热过程,在303 K下吸附容量高达333.3 mg·g−1

    (3) 对MCC-SA-SEP多孔复合微球进行多次吸附-解吸后,其吸附性能几乎不受影响,说明MCC-SA-SEP多孔复合微球具有良好的再生与循环使用性能。

  • 图  1   不同SEP含量的MCC-SA-SEP复合微球的SEM图像

    Figure  1.   SEM images of MCC-SA-SEP beads with different SEP contents

    图  2   MCC、SA、SEP及MCC-SA-SEP复合微球的TG曲线

    Figure  2.   TG curves of MCC, SA, SEP and MCC-SA-SEP beads

    图  3   MCC-SA-SEP-21微球投入量和溶液pH对吸附性能的影响

    Figure  3.   Effect of MCC-SA-SEP-21 beads dosage and pH on the adsorption properties

    图  4   吸附时间对MCC-SA-SEP-21复合微球吸性能的影响

    Figure  4.   Effect of time on the adsorption performance of MCC-SA-SEP-21 beads

    图  5   MCC-SA-SEP-21复合微球吸附亚甲基蓝(MB)的动力学模型拟合曲线

    Figure  5.   Kinetic fitting curves of adsorption data of methylene blue (MB) onto MCC-SA-SEP-21 beads

    Qe—Equilibrium adsorption on MB; Qt—Adsorption time t corresponds to the adsorption capacity of MB

    图  6   不同初始浓度的MB对MCC-SA-SEP-21复合微球吸附性能的影响

    Figure  6.   Effect of initial concentrations of MB on the adsorption capacities of MCC-SA-SEP-21 beads

    图  7   MCC-SA-SEP-21复合微球的Langmuir等温吸附 (a) 和Freundlich等温吸附拟合曲线 (b)

    Figure  7.   Langmuir model fitting curve (a) and Freundlich model fitting curve (b) for MCC-SA-SEP-21 beads

    图  8   MCC-SA-SEP-21复合微对MB的吸附热力学拟合曲线

    Figure  8.   Thermodynamic fitting curve of MB onto MCC-SA-SEP-21 beads

    Kc—Adsorption equilibrium constant

    图  9   MCC-SA-SEP-21复合微球的再生性

    Figure  9.   Regeneration property of MCC-SA-SEP-21 beads

    表  1   不同SEP含量制备的微晶纤维素-海藻酸钠-海泡石(MCC-SA-SEP)复合微球

    Table  1   Microcrystalline cellulose-sodium alginate-sepiolite (MCC-SA-SEP) composite beads prepared with various SEP contents

    MCC-SA content/gSEP content/gComposite bead
    2 0 MCC-SA-SEP-0
    2 0.5 MCC-SA-SEP-41
    2 1 MCC-SA-SEP-21
    2 2 MCC-SA-SEP-11
    下载: 导出CSV

    表  2   MCC-SA-SEP-21多孔复合微球吸附MB的动力学模型拟合参数

    Table  2   Parameters of kinetic adsorption models for MB onto MCC-SA-SEP-21 beads

    AdsorbateQe(exp)/(mg·g−1)Pseudo-first-order modelPseudo-second-order model
    Q1e(cal)/(mg·g−1)k1/(min−1)R2Q2e(cal)/(mg·g−1)k2/(g·mg−1·min−1)R2
    MB 306.7 199.3 1.06×10−2 0.9855 322.6 9.1×10−5 0.9967
    Notes: k1, k2—Pseudo-first-order kinetic and Pseudo-second-order kinetic constants, respectively; Qe(cal)—Calculation amount of MB removed per unit mass of adsorbent; Qe(exp)—Experimental amount of MB removed per unit mass of adsorbent.
    下载: 导出CSV

    表  3   MCC-SA-SEP-21复合微球对MB的吸附等温拟合结果

    Table  3   Isothermal parameters for the adsorption of MB onto MCC-SA-SEP-21 beads

    AdsorbateLangmuirFreundlich
    Qmax/(mg·g−1)kL/(L·mg−1)R2kF/(L·mg−1)nR2
    MB 333.3 0.147 0.9985 112 5 0.8949
    Notes: Qmax—Langmuir adsorption maximum; kL—Langmuir coefficient of distribution of the adsorption; kF—Freundlich coefficient of distribution of the adsorption; n—Freundlich constants related to adsorption strength.
    下载: 导出CSV

    表  4   同类纤维素复合微球吸附剂对MB的吸附容量对比

    Table  4   Adsorption capacity ratio of similar cellulose composite beads adsorbents to MB

    AdsorbentAdsorption capacity/(mg·g−1)Reference
    SA/cellulose hydrogel beads 163.36 [26]
    Cellulose/diatomite composite aerogel beads 71.9424 [27]
    MCDBs 117.65 [14]
    CMC-AlG/GO hydrogels beads 78.5 [28]
    CNC-ALG 255.5 [29]
    CNC/MnO2/ALG beads 136.7 [30]
    MCC-SA-SEP 333.3 This work
    Notes: GO—Graphene oxide; MCDBs—Modified cellulose/diatomite beads; CMC—Carboxymethyl cellulose; CNC—Cellulose nanocrystal; ALG—Alginate.
    下载: 导出CSV

    表  5   MCC-SA-SEP-21复合微球对MB的吸附热力学参数

    Table  5   Thermodynamic parameters for the adsorption of MB onto MCC-SA-SEP-21 beads

    T/KΔGo/(kJ·mol−1)ΔHo/(kJ·mol−1)ΔSo/(J·mol−1·K−1)
    303 −2.1 −22 −66.1
    308 −1.6
    313 −1.2
    318 −1
    323 −0.7
    Notes: ΔGo—Gibbs free energy variation of the adsorption process; ΔHo—Enthalpy change of the adsorption process; ΔSo—Entropy change of the adsorption process.
    下载: 导出CSV
  • [1]

    DAI L, ZHU W, HE L, et al. Calcium-rich biochar from crab shell: An unexpected super adsorbent for dye removal[J]. Bioresource Technology,2018,267:510-516. DOI: 10.1016/j.biortech.2018.07.090

    [2]

    SONG W, GAO B, XU X, et al. Adsorption-desorption behavior of magnetic amine/Fe3O4 functionalized biopolymer resin towards anionic dyes from wastewater[J]. Bioresource Technology,2016,210:123-130. DOI: 10.1016/j.biortech.2016.01.078

    [3]

    HOLKAR C R, JADHAV A J, PINJARI D V, et al. A critical review on textile wastewater treatments: Possible approaches[J]. Journal of Environmental Management,2016,182:351-366.

    [4]

    GUPTA K C, KUMAR M N V. pH dependent hydrolysis and drug release behavior of chitosan/poly(ethylene glycol) polymer network microspheres[J]. Journal of Materials Science: Materials in Medicine,2001,12(9):753-759. DOI: 10.1023/A:1017976014534

    [5]

    PARK S, OH Y, YUN J, et al. Cellulose/biopolymer/Fe3O4 hydrogel microbeads for dye and protein adsorption[J]. Cellulose,2020,27(5):2757-2773. DOI: 10.1007/s10570-020-02974-5

    [6] 曾丹林, 陈诗渊, 张崎, 等. 纤维素制备微球材料的研究进展[J]. 材料导报, 2015, 29(17):68-72.

    ZENG Danlin, CHEN Shiyuan, ZHANG Qi, et al. Research progress of microspheres materials synthesized from cellulose[J]. Materials Reports,2015,29(17):68-72(in Chinese).

    [7]

    ROY D, SEMSARILAR M, GUTHRIE J T, et al. Cellulose modification by polymer grafting: A review[J]. Chemical Society Reviews,2009,38(7):2026-2064.

    [8]

    WAN Y, CHEN X, XIONG G, et al. Synthesis and characterization of three-dimensional porous graphene oxide/sodium alginate scaffolds with enhanced mechanical properties[J]. Materials Express,2014,4(5):429-434. DOI: 10.1166/mex.2014.1188

    [9]

    HU Z H, OMER A M, OUYANG X K, et al. Fabrication of carboxylated cellulose nanocrystal/sodium alginate hydrogel beads for adsorption of Pb(II) from aqueous solution[J]. International Journal of Biological Macromolecules,2018,108:149-157. DOI: 10.1016/j.ijbiomac.2017.11.171

    [10] 李延庆, 刘志明, 程小凯, 等. 海藻酸钠/纤维素复合微球的制备及性能表征[J]. 林产化学与工业, 2019, 39(2):67-72.

    LI Yanqing, LIU Zhiming, CHENG Xiaokai, et al. Preparation and performance characterization of sodium alginate/cellulose composite microspheres[J]. Chemistry and Industry of Forest Products,2019,39(2):67-72(in Chinese).

    [11]

    TARTAGLIONE G, TABUANI D, CAMINO G, et al. PP and PBT composites filled with sepiolite: Morphology and thermal behaviour[J]. Composites Science and Technology,2008,68(2):451-460. DOI: 10.1016/j.compscitech.2007.06.023

    [12] 张巍. 海泡石吸附混合污染物和气态污染物的研究进展[J]. 中国矿业, 2019, 28(2):126-132.

    ZHANG Wei. Research progress on sepiolite adsorption of mixed pollutants and gaseous pollutants[J]. China Mining Magazine,2019,28(2):126-132(in Chinese).

    [13] 杨欣洁. 新型磁性复合有机海泡石对双酚A的吸附试验研究[D]. 长沙: 湖南大学, 2015.

    YANG Xinjie. Adsorption of bisphenol A from aqueous solutions onto new magnetic composite organic sepiolite[D]. Changsha: Hunan University, 2015.

    [14]

    LI Y, XIAO H N, CHEN M D, et al. Absorbents based on maleic anhydride-modified cellulose fibers/diatomite for dye removal[J]. Journal of Materials Science,2014,46(19):6696-6704.

    [15] 李喜梅. 海藻酸盐纤维的热性能研究[D]. 青岛: 青岛大学, 2018.

    LI Ximei. Study on thermal properties of alginate fiber[D]. Qingdao: Qingdao University, 2018(in Chinese).

    [16] 宗鲁, 纪全, 谭利文, 等. 纤维素-钙纤维的制备及阻燃性能表征[J]. 高分子材料科学与工程, 2015, 31(2):176-180.

    ZONG Lu, JI Quan, TAN Liwen, et al. Preparation and flame retardant properties of cellulose-Ca fibers[J]. Polymer Materials Science & Engineering,2015,31(2):176-180(in Chinese).

    [17]

    ZHANG Y W, XU L, ZHAO L, et al. Radiation synthesis and Cr(VI) removal of cellulose microsphere adsorbent[J]. Carbohydrate Polymers,2012,88(3):931-938. DOI: 10.1016/j.carbpol.2012.01.040

    [18] 徐春霞, 降帅, 韩阜益, 等. 纤维素纳米纤丝气凝胶制备及其对亚甲基蓝的吸附性能[J]. 纺织学报, 2019, 40(10):20-25.

    XU Chunxia, JIANG Shuai, HAN Fuyi, et al. Preparation of cellulose nanofibrils aerogel and its adsorption of methylene blue[J]. Journal of Textile Research,2019,40(10):20-25(in Chinese).

    [19]

    LIU L, GAO Z Y, SU X P, et al. Adsorption removal of dyes from single and binary solutions using a cellulose-based bioadsorbent[J]. ACS Sustainable Chemistry & Engineering,2015,3(3):432-442.

    [20]

    TANZIFI M, YARAKI M T, KIADENHI A D, et al. Adsorption of amido black 10B from aqueous solution using polyaniline/SiO2 nanocomposite: Experimental investigtion and artificial neural network modeling[J]. Journal of Colloid and Interface Science,2018,510:246-261. DOI: 10.1016/j.jcis.2017.09.055

    [21]

    ZHOU Y, LIU X, XIANG Y, et al. Modification of biochar derived from sawdust and its application in removal of tetracycline and copper from aqueous solution: Adsorption mechanism and modelling[J]. Bioresource Technology,2017(245):266-273.

    [22]

    GULAY B, BEGUM A, YAKUP A. Adsorption kinetics and thermodynamic parameters of cationic dyes from aqueous solutions by using a new strong cation-exchange resin[J]. Chemical Engineering Journal,2009,1(52):339-346.

    [23]

    JIAO C L, TAO J, XIONG J Q, et al. In situ synthesis of MnO2-loaded biocomposite based on microcrystalline cellulose for Pb2+ removal from wastewater[J]. Cellulose,2017,24(6):2591-2604. DOI: 10.1007/s10570-017-1271-4

    [24]

    TAO J, XIONG J Q, JIAO C L, et al. Hybrid mesoporous silica based on hyperbranch-substrate nanonetwork as highly efficient adsorbent for water treatment[J]. ACS Sustainable Chemistry& Engineering,2016,4(1):60-68.

    [25]

    XU D, TAN X, CHEN C, et al. Removal of Pb(Ⅱ) from aqueous solution by oxidized multiwalled carbon nano-tubes[J]. Journal of Hazardous Materials,2008,154:407-416. DOI: 10.1016/j.jhazmat.2007.10.059

    [26] 吴鹏, 刘志明. 海藻酸钠/纤维素水凝胶球的制备与应用[J]. 功能材料, 2015, 46(10):10144-10147, 10152.

    WU Peng, LIU Zhiming. Preparation and application of sodium alginate/cellulose hydrogel beads[J]. Journal of Functional Materials,2015,46(10):10144-10147, 10152(in Chinese).

    [27] 王佳楠, 羿颖, 边勇军, 等. 纤维素/硅藻土复合气凝胶球的制备及其吸附性能的研究[J]. 纤维素科学与技术, 2019, 27(1):49-56.

    WANG Jianan, YI Ying, BIAN Yongjun, et al. Preparation of cellulose/diatomite composite aerogel beads and its adsorption performance[J]. Journal of Cellulose Science and Technology,2019,27(1):49-56(in Chinese).

    [28]

    ALLOUSS D, ESSAMLALI Y, AMADINE O, et al. Response surface methodology for optimization of methylene blue adsorption onto carboxymethyl cellulose-based hydrogel beads: Adsorption kinetics, isotherm, thermodynamics and reusability studies[J]. RSC Advances,2019,9(65):37858-37869. DOI: 10.1039/C9RA06450H

    [29]

    MOHAMMED N, GRISHKEWICH N, WAEIJEN H A, et al. Continuous flow adsorption of methylene blue by cellulose nanocrystal-alginate hydrogel beads infixed bed columns[J]. Carbohydrate Polymers,2016,136:1194-1202. DOI: 10.1016/j.carbpol.2015.09.099

    [30]

    DIAO H L, ZHANG Z J, LIU Y X, et al. Facile fabrication of carboxylated cellulose nanocrystal-MnO(2)beads for high-efficiency removal of methylene blue[J]. Cellulose,2020,27(12):7053-7066. DOI: 10.1007/s10570-020-03260-0

    [31]

    KUMAR K V, KUMARAN A. Removal of methylene blue by mango seed kernel powder[J]. Biochemical Engineering Journal,2005,27(1):83-93. DOI: 10.1016/j.bej.2005.08.004

    [32]

    KUBILAY S, GÜRKAN R, SAVRAN A, et al. Removal of Cu(II), Zn(II) and Co(II) ions from aqueous solutions by adsorption onto natural bentonite[J]. Adsorption,2007,13(1):41-51. DOI: 10.1007/s10450-007-9003-y

    [33]

    STANCIU M C, NICHIFOR M. Adsorption of anionic dyes on a cationic amphiphilic dextran hydrogel: Equilibrium, kinetic, and thermodynamic studies[J]. Colloid and Polymer Science,2019,297(1):45-57. DOI: 10.1007/s00396-018-4439-z

    [34]

    JIANG Y F, SUN H, YVES U J, et al. Impact of biochar produced from post-harvest residue on the adsorption behavior of diesel oil on loess soil[J]. Environmental Geochemistry and Health,2016,38(1):243-253. DOI: 10.1007/s10653-015-9712-1

  • 期刊类型引用(9)

    1. 蔡杰慧,杨英全,陈文静,张佳梅,许建本,邱诗铭. 蔗渣纤维素-海藻酸钙-膨润土多孔微球的制备及其对罗丹明B吸附性能的研究. 化工新型材料. 2024(01): 292-298 . 百度学术
    2. 唐雨霞,程士润,陈卫麒,金海军,王浩. DCG复合气凝胶的制备及对刚果红的吸附性能. 印染. 2024(04): 53-57 . 百度学术
    3. 蔡杰慧,杨英全,李致宝,郑燕菲,莫月香. 改性蔗渣纤维素-海藻酸钙-膨润土微球制备及吸附. 化学工程. 2024(05): 39-45 . 百度学术
    4. 王艳飞,靳泽远,李卓林,王鹤然,邢鹏宇,罗琳龙,胡英成. Cu_2O-PVA/纳米纤维素复合材料的制备与吸附—光催化性能. 复合材料学报. 2023(01): 180-191 . 本站查看
    5. 郭鑫,苏宏玺,赵鸿,欧阳成伟,强小虎,黄大建. 海泡石/原位生成氢氧化镁对琼脂基气凝胶的性能影响研究. 材料导报. 2023(05): 249-254 . 百度学术
    6. 翟健玉,白文浩,李昂,崔策,郭荣辉. ZIF-67/废棉纤维素复合气凝胶的制备及其对染料的去除性能. 复合材料学报. 2022(03): 1259-1267 . 本站查看
    7. 郭紫阳,魏春艳,邵彦峥,孙将皓,谷金峻. 棉秆皮微晶纤维素/β-环糊精气凝胶纤维的制备及吸附性能. 上海纺织科技. 2022(06): 1-4+10 . 百度学术
    8. 付秋平,张荣彬,詹凤柳,陈清,郭燕菊,查磊. 氧化多壁碳纳米管/海藻酸钠复合材料对Pb(Ⅱ)的吸附性能研究. 化工新型材料. 2022(08): 235-239 . 百度学术
    9. 任静静,郑刘春,张丹凤,蔡嘉哲,王昕颖,程露,何俊锋,郑彩雯. 不同类型酸修饰-磁化海泡石对水体Cd(Ⅱ)的吸附研究. 环境科学学报. 2021(12): 4812-4824 . 百度学术

    其他类型引用(4)

图(9)  /  表(5)
计量
  • 文章访问数:  1722
  • HTML全文浏览量:  578
  • PDF下载量:  117
  • 被引次数: 13
出版历程
  • 收稿日期:  2020-12-15
  • 录用日期:  2021-02-21
  • 网络出版日期:  2021-03-09
  • 刊出日期:  2021-11-30

目录

/

返回文章
返回