留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

玄武岩纤维特征参数对混凝土单轴受拉性能的影响

郭耀东 刘元珍 王文婧 张玉 王凯迪 刘运房

郭耀东, 刘元珍, 王文婧, 等. 玄武岩纤维特征参数对混凝土单轴受拉性能的影响[J]. 复合材料学报, 2023, 40(5): 2897-2912. doi: 10.13801/j.cnki.fhclxb.20220706.003
引用本文: 郭耀东, 刘元珍, 王文婧, 等. 玄武岩纤维特征参数对混凝土单轴受拉性能的影响[J]. 复合材料学报, 2023, 40(5): 2897-2912. doi: 10.13801/j.cnki.fhclxb.20220706.003
GUO Yaodong, LIU Yuanzhen, WANG Wenjing, et al. Influence of basalt fiber characteristic parameters on uniaxial tensile properties of concrete[J]. Acta Materiae Compositae Sinica, 2023, 40(5): 2897-2912. doi: 10.13801/j.cnki.fhclxb.20220706.003
Citation: GUO Yaodong, LIU Yuanzhen, WANG Wenjing, et al. Influence of basalt fiber characteristic parameters on uniaxial tensile properties of concrete[J]. Acta Materiae Compositae Sinica, 2023, 40(5): 2897-2912. doi: 10.13801/j.cnki.fhclxb.20220706.003

玄武岩纤维特征参数对混凝土单轴受拉性能的影响

doi: 10.13801/j.cnki.fhclxb.20220706.003
基金项目: 国家自然科学基金(52078473;51808375;5201101735);Russian Foundation for Basic Research (21-51-53008);住建部科学技术计划项目(2021-K-046);山西省新兴产业领军人才项目(202014)
详细信息
    通讯作者:

    刘元珍,博士,教授,博士生导师,研究方向为再生混凝土结构、绿色建筑技术、固废资源化利用 E-mail: liuyuanzhen@tyut.edu.cn

  • 中图分类号: TB301

Influence of basalt fiber characteristic parameters on uniaxial tensile properties of concrete

Funds: National Natural Science Foundation of China (52078473; 51808375; 5201101735); Russian Foundation for Basic Research (21-51-53008); Scientific and Technological Project of the Ministry of Housing and Urban-Rural Construction (2021-K-046); Shanxi Province Emerging Industry Leading Talent Project (202014)
  • 摘要: 考虑玄武岩纤维体积分数和长径比两个主要因素,通过直接拉伸试验,研究玄武岩纤维对混凝土轴心受拉破坏形态、应力-应变全曲线、受拉荷载变形性能和韧性的影响。结果表明:玄武岩纤维增强混凝土单轴受拉破坏呈明显的塑性特征,玄武岩纤维显著增强了混凝土在轴心受拉荷载作用下的韧性;与普通混凝土(NC)相比,随着玄武岩纤维增强因子的提高,轴心受拉应力-应变全曲线特征点和断裂能均呈先增大后减小的趋势;基于轴心受拉应力-应变全曲线分析,提出关于纤维体积分数和长径比的玄武岩纤维混凝土轴心受拉应力-应变本构模型,可供玄武岩纤维混凝土结构和构件的非线性分析和工程设计参考。对比分析拉压比、折压比和单轴拉伸破坏断裂能3种韧性指标,发现断裂能可以准确评价玄武岩纤维增强混凝土(BFRC)受拉韧性,BFRC韧性较NC最大提升率为43.0%。

     

  • 图  1  粗骨料级配

    Figure  1.  Gradation of coarse aggregate

    图  2  玄武岩纤维(BF)

    Figure  2.  Basalt fiber (BF)

    图  3  玄武岩纤维增强混凝土(BFRC)的搅拌方法

    Figure  3.  Mixing procedures of basalt fiber reinforced concrete (BFRC)

    图  4  单轴拉伸试验装置

    LVDT—Linear displacement sensor

    Figure  4.  Uniaxial tension test device

    图  5  BFRC力学性能与玄武岩纤维体积分数的关系

    Figure  5.  Relationship between mechanical properties of BFRC and volume fraction of basalt fiber

    图  6  BFRC力学性能与玄武岩纤维长径比l/f的关系

    Figure  6.  Relationship between mechanical properties of BFRC and length diameter ratio l/f of basalt fiber

    图  7  玄武岩纤维拔断图像

    Figure  7.  Diagram of basalt fiber pulled out

    图  8  混凝土受拉破坏形态

    Figure  8.  Tensile failure mode of concrete

    图  9  BFRC单轴拉伸应力-应变曲线

    Figure  9.  Uniaxial tensile stress-strain curves of BFRC

    图  10  BFRC轴向拉伸全过程

    NC—Normal concrete

    Figure  10.  Whole process of axial tension of BFRC

    图  11  BFRC应力与玄武岩纤维体积分数的关系

    Figure  11.  Relationship between stress of BFRC and volume fraction of basalt fiber

    图  12  BFRC应力特征值与玄武岩纤维长径比的关系

    Figure  12.  Relationship between stress characteristic value of BFRC and length diameter ratio of basalt fiber

    图  13  BFRC应变与玄武岩纤维体积分数的关系

    Figure  13.  Relationship between strain of BFRC and volume fraction of basalt fiber

    图  14  BFRC应变特征值与玄武岩纤维长径比的关系

    Figure  14.  Relationship between strain characteristic value of BFRC and length diameter ratio of basalt fiber

    图  15  BFRC拉伸断裂破坏模型

    Figure  15.  Tensile fracture failure model of BFRC

    图  16  BFRC三维网格结构

    Figure  16.  3D grid structure of BFRC

    图  17  0.20%BF(1400)/C和0.20%BF(1600)/C试件单轴受拉应力-应变曲线与预测曲线对比

    ε—Strain; ε0—Peak strain; σ—Stress; σ0—Peak stress

    Figure  17.  Comparison of predictions and experimental results of 0.20%BF(1400)/C and 0.20%BF(1600)/C

    图  18  BFRC拉压比散点图

    Figure  18.  Tension compression ratio scatter diagram of BFRC

    图  19  BFRC折压比散点图

    Figure  19.  Flexural compression ratio scatter diagram of BFRC

    图  20  Shi模型[3]

    Figure  20.  Shi model[3]

    kOA—Slope of straight line OA; kAB—Slope of straight line AB; kBC—Slope of straight line BC; T—Toughness

    表  1  水泥和硅灰(SF)的主要化学成分和物理性能

    Table  1.   Main chemical composition and physical properties of cement and silica fume (SF)

    Index SiO2/
    %
    Al2O3/
    %
    Fe2O3/
    %
    CaCl2/
    %
    MgCl2/
    %
    Na2O/
    %
    MgO/
    %
    K2O/
    %
    CaO/
    %
    MnO/
    %
    Specific
    gravity/
    (kg·m−3)
    Specific
    surface
    area/(m2·kg−1)
    Loss on
    ignition/%
    Cement 20.88 2.86 4.66 0.48 1.66 0.26 69.04 0.16 3120 334 1.50
    SF 94.26 0.78 0.66 0.58 0.64 2.65 0.43 2310 18954 2.28
    下载: 导出CSV

    表  2  骨料的物理性质

    Table  2.   Physical properties of aggregates

    Index Apparent
    density/
    (kg·m−3)
    Bulk density/
    (kg·m−3)
    Moisture
    content/%
    24 h water
    absorption/%
    Crushing
    index
    Needle and
    flake particle
    content/%
    Clay lump/% Fineness
    modulus
    NA 2660 1430 0.63 1.19 11.70 2.24 0.60
    S 2720 1450 1.20 2.80 0.12 2.6
    下载: 导出CSV

    表  3  BF的物理性能

    Table  3.   Physical properties of BF

    Length/
    mm
    Elongation/
    %
    Tensile
    strength/
    MPa
    Elastic modulus/
    GPa
    Density/
    (kg·m−3)
    15-243.12400-380079-932650
    下载: 导出CSV

    表  4  混凝土的配合比

    Table  4.   Mixture proportion of the concrete kg/m3

    NASCementSFWaterSP
    1211682364271951.5
    Note: SP—Superplasticizer.
    下载: 导出CSV

    表  5  试件编号

    Table  5.   Specimen number

    Specimen numberVf/%l/dSpecimen numberVf/%l/d
    0.05%BF(1000)/C0.0510000.05%BF(1200)/C0.051200
    0.10%BF(1000)/C0.1010000.10%BF(1200)/C0.101200
    0.15%BF(1000)/C0.1510000.15%BF(1200)/C0.151200
    0.20%BF(1000)/C0.2010000.20%BF(1200)/C0.201200
    0.25%BF(1000)/C0.2510000.25%BF(1200)/C0.251200
    0.30%BF(1000)/C0.3010000.30%BF(1200)/C0.301200
    0.35%BF(1000)/C0.3510000.35%BF(1200)/C0.351200
    0.05%BF(1400)/C0.0514000.05%BF(1600)/C0.051600
    0.10%BF(1400)/C0.1014000.10%BF(1600)/C0.101600
    0.15%BF(1400)/C0.1514000.15%BF(1600)/C0.151600
    0.20%BF(1400)/C0.2014000.20%BF(1600)/C0.201600
    0.25%BF(1400)/C0.2514000.25%BF(1600)/C0.251600
    0.30%BF(1400)/C0.3014000.30%BF(1600)/C0.301600
    0.35%BF(1400)/C0.3514000.35%BF(1600)/C0.351600
    Notes: Vf—Volume fraction of the fiber; l/d—Length diameter ratio of the fiber; C—Concrete.
    下载: 导出CSV

    表  6  混凝土受拉应力-应变曲线的经典模型

    Table  6.   Classical model of stress-strain curve of concrete under tension compression

    Curve segmentationEquation
    Rising section $ {y}{=}{Ax}{+}{B}{{x}}^{{2}}{+}{C}{{x}}^{{3}} $
    $ {y}{=}{{a}}_{{0}}{+}{{a}}_{{1}}{x}{+}{{a}}_{{2}}{{x}}^{{2}}{+}{{a}}_{{3}}{{x}}^{{4}} $
    $ {y}{=}\dfrac{{ax}}{{b}{{x}}^{{c}}{+1}} $
    ${y}{=}\dfrac{ {x} }{ {\alpha}{ {x} }^{ {\beta} }{+}{\gamma} }$
    $ {y}{=}\dfrac{{x}}{{\alpha}{{(1-}{x}{)}}^{{\beta}}{+}{x}} $
    $ {y}{=1.2}{x}{-0.2}{{x}}^{{6}} $
    Descending section $ {y}{=}\dfrac{{1}}{{{x}}^{{m}}} $
    ${y}{=}{A}{ { {\rm{e} } } }^{ {-}{k}{ {x} }^{ { \lambda } } }$
    $ {y}{=}\dfrac{{x}}{{\alpha}{{(1-}{x}{)}}^{{\beta}}{+}{x}} $
    $ {y}{=}\dfrac{{x}}{{\alpha}{{(}{x}{-1)}}^{{2}}{+}{x}} $
    Notes: x—Strain; y—Stress; A, B, C, a0, a1, a2, a3, a, b, c, k, m, α, β, γ—Parameters corresponding to the classical models of different tensile stress-strain full curve equations.
    下载: 导出CSV

    表  7  BFRC轴心受拉应力-应变全曲线方程参数

    Table  7.   Parameters of BFRC axial tensile stress-strain full curve equation

    Specimen numbera1R2αtR2
    NC1.324599.742.980897.0
    0.05%BF(1200)/C1.430499.739.451291.2
    0.10%BF(1200)/C1.514799.134.562488.2
    0.15%BF(1200)/C1.600199.632.624487.7
    0.20%BF(1200)/C1.515999.322.034496.5
    0.25%BF(1200)/C1.462799.417.355399.3
    0.30%BF(1200)/C1.343699.519.549196.5
    0.35%BF(1200)/C1.244799.314.507998.3
    Notes: a1—Rising section parameters of full curve equation; αt—Falling section parameters of full curve equation; R2—Goodness of fit.
    下载: 导出CSV

    表  8  不同BF体积分数BFRC的k值和T

    Table  8.   k and T values of BFRC with different BF volume fractions

    Specimen numberkOA/GPa|kAB|/GPa|kBC|/GPaT/(N·m)
    NC 24.18 61.49 13.43 5.37
    0.05vol%BF(1200)/C 24.46 72.13 14.56 5.74
    0.10vol%BF(1200)/C 25.58 94.67 16.14 6.18
    0.15vol%BF(1200)/C 25.83 104.67 19.54 7.08
    0.20vol%BF(1200)/C 26.67 101.00 20.80 7.68
    0.25vol%BF(1200)/C 26.63 101.87 23.90 7.18
    0.30vol%BF(1200)/C 25.60 70.94 12.60 6.39
    0.35vol%BF(1200)/C 25.63 57.50 11.60 5.82
    下载: 导出CSV
  • [1] 刘加平, 汤金辉, 韩方玉. 现代混凝土增韧防裂原理及应用[J]. 土木工程学报, 2021, 54(10):47-54, 63. doi: 10.15951/j.tmgcxb.2021.10.007

    LIU Jiaping, TANG Jinhui, HAN Fangyu. Toughening and crack prevention of modern concrete: Mechanisms and applications[J]. China Civil Engineering Journal,2021,54(10):47-54, 63(in Chinese). doi: 10.15951/j.tmgcxb.2021.10.007
    [2] WANG Y, WU H C, LI V C. Concrete reinforcement with recycled fibers[J]. Journal of Materials in Civil Engineering,2000,12(4):314-319. doi: 10.1061/(ASCE)0899-1561(2000)12:4(314)
    [3] SHI X J, PARK P, REW Y, et al. Constitutive behaviors of steel fiber reinforced concrete under uniaxial compression and tension[J]. Construction and Building Materials, 2020, 233(10): 117316.
    [4] CHIKHALIKAR S M, TANDE S N. An experimental investigation on characteristics properties of fibre reinforced concrete containing waste glass powder as pozzolana[C]//37th Conference on Our World in Concrete and Structures. Singapore: 2012.
    [5] BRANSTON J, DAS S, KENNO S Y, et al. Mechanical behaviour of basalt fibre reinforced concrete[J]. Construction and Building Materials,2016,124:878-886. doi: 10.1016/j.conbuildmat.2016.08.009
    [6] CORY H, HATEM M, ADEL S, et al. Use of basalt fibers for concrete structures[J]. Construction and Building Materials,2015,96(15):37-46.
    [7] ZHU D J, LIU S, YAO Y M, et al. Effects of short fiber and pre-tension on the tensile behavior of basalt textile reinforced concrete[J]. Cement and Concrete Composites,2019,96:33-45. doi: 10.1016/j.cemconcomp.2018.11.015
    [8] ARSLAN M E. Effects of basalt and glass chopped fibers addition on fracture energy and mechanical properties of ordinary concrete: Cmod measurement[J]. Construction & Building Materials,2016,114(1):383-391.
    [9] SIM J, PARK C, MOON D Y. Characteristics of basalt fiber as a strengthening material for concrete structures[J]. Composites Part B: Engineering,2005,36(6):504-512.
    [10] SUN X, GAO Z, CAO P, et al. Mechanical properties tests and multiscale numerical simulations for basalt fiber reinforced concrete[J]. Construction and Building Materials,2019,202:58-72. doi: 10.1016/j.conbuildmat.2019.01.018
    [11] WANG D L, JU Y Z, SHEN H, et al. Mechanical properties of high performance concrete reinforced with basalt fiber and polypropylene fiber[J]. Construction and Building Materials,2019,197:464-473. doi: 10.1016/j.conbuildmat.2018.11.181
    [12] RAMESH B, ESWARI S. Mechanical behaviour of basalt fibre reinforced concrete: An experimental study[J]. Materials Today: Proceedings, 2021, 43(2): 2317-2322.
    [13] ELSHAFIE S, WHITTLESTON G. A review of the effect of basalt fiber lengths and proportions on the mechanical properties of concrete[J]. International Journal of Research in Engineering and Technology,2015,4(1):458-465. doi: 10.15623/ijret.2015.0401069
    [14] 王意. 玄武岩纤维混凝土力学性能试验研究[D]. 成都: 西南交通大学, 2018.

    WANG Yi. Experimental study on mechanical properties of basalt fiber reinforced concrete[D]. Chengdu: Southwest Jiaotong University, 2018(in Chinese).
    [15] MEHRAN K, ABDUL R, MAJID A. Efficiency of silica-fume content in plain and natural fiber reinforced concrete for concrete road[J]. Construction and Building Materials,2020,244:118382. doi: 10.1016/j.conbuildmat.2020.118382
    [16] WANG Y G, HHGHES P, NIU H C, et al. A new method to improve the properties of recycled aggregate concrete: Composite addition of basalt fiber and nano-silica[J]. Journal of Cleaner Production,2019,236(11):117602.
    [17] HASAN D, AKR Z. Influence of basalt fiber on physical and mechanical properties of treated recycled aggregate concrete[J]. Construction and Building Materials,2020,254:119216. doi: 10.1016/j.conbuildmat.2020.119216
    [18] FANG S E, HONG H S, ZHANG P H. Mechanical property tests and strength formulas of basalt fiber reinforced recycled aggregate concrete[J]. Materials,2018,11(10):1851. doi: 10.3390/ma11101851
    [19] 詹奇淇, 詹炳根. 玄武岩纤维增强泡沫混凝土韧性及抗压强度试验研究[J]. 合肥工业大学学报(自然科学版), 2020, 43(5):667-672.

    ZHAN Qiqi, ZHAN Binggen. Experimental study on toughness and compressive strength of basalt fiber reinforced foamed concrete[J]. Journal of Hefei University of Technology (Natural Science),2020,43(5):667-672(in Chinese).
    [20] DIAS D P, THAUMATURGO C. Fracture toughness of geopolymeric concretes reinforced with basalt fibers[J]. Cement & Concrete Composites,2005,27(1):49-54.
    [21] 郑遵畅. 玄武岩纤维活性粉末混凝土基本性能试验研究[D]. 北京: 北京交通大学, 2013.

    ZHENG Zunchang. Experimental study for the basic performance of the basalt fiber reactive powder concrete[D]. Beijing: Beijing Jiaotong University, 2013(in Chinese).
    [22] 赵高锦, 赵卓, 陈歆, 等. 玄武岩纤维混凝土应力-应变全曲线试验研究[J]. 水利与建筑工程学报, 2019, 17(1):103-107. doi: 10.3969/j.issn.1672-1144.2019.01.018

    ZHAO Gaojin, ZHAO Zhuo, CHEN Xin, et al. Experiments on complete stress-strain curves of basalt fiber reinforced concrete[J]. Journal of Water Resources and Architectural Engineering,2019,17(1):103-107(in Chinese). doi: 10.3969/j.issn.1672-1144.2019.01.018
    [23] 于跟社, 邓宗才, 王珏, 等. 玄武岩纤维高性能混凝土轴拉和抗冲击韧性试验研究[J]. 混凝土与水泥制品, 2022(3):56-60. doi: 10.19761/j.1000-4637.2022.03.056.05

    YU Genshe, DENG Zongcai, WANG Jue, et al. Experimental study on axial tensile and impact toughness of basalt fiber reinforced high performance concrete[J]. China Concrete and Cement Products,2022(3):56-60(in Chinese). doi: 10.19761/j.1000-4637.2022.03.056.05
    [24] 中国国家标准化管理委员会. 混凝土物理力学性能试验方法标准: GB/T 50081—2019[S]. 北京: 中国建筑工业出版社, 2019.

    Standardization Administration of the People's Republic of China. Standard for test methods of concrete physical and mechanical properties: GB/T 50081—2019[S]. Beijing: China Architecture & Building Press, 2019.
    [25] 贺晶晶, 师俊平, 张勇, 等. 玄武岩纤维改善混凝土拉伸性能分析[J]. 复合材料科学与工程, 2021(331):39-43.

    HE Jingjing, SHI Junping, ZHANG Yong, et al. Analysis on tensile properties of BFRC[J]. Composites Science and Engineering,2021(331):39-43(in Chinese).
    [26] 罗章. 中应变率下钢纤维混凝土的本构关系研究[D]. 长沙: 中南大学, 2004.

    LUO Zhang. Study on the constitutive relationship of steel fiber reinforced concrete under intermediate strain rate[D]. Changsha: Central South University, 2004(in Chinese).
    [27] 徐礼华, 梅国栋, 黄乐, 等. 钢-聚丙烯混杂纤维混凝土轴心受拉应力-应变关系研究[J]. 土木工程学报, 2014, 47(7):35-45.

    XU Lihua, MEI Guodong, HUANG Le, et al. Study on uniaxial tensile stress-strain relationship of steel-polypropylene hybrid fiber reinforced concrete[J]. China Civil Engineering Journal,2014,47(7):35-45(in Chinese).
    [28] 过镇海, 张秀琴, 张达成, 等. 混凝土应力-应变全曲线的试验研究[J]. 建筑结构学报, 1982(1):1-12.

    GUO Zhenhai, ZHANG Xiuqin, ZHANG Dacheng, et al. Experimental investigation of the complete stress-strain curve of concrete[J]. Journal of Building Structures,1982(1):1-12(in Chinese).
    [29] 卢钦旺, 桂雷, 胡晓斌. 再生混凝土轴心受拉应力-应变关系[J]. 武汉大学学报(工学版), 2020, 53(5):418-423.

    LU Qinwang, GUI Lei, HU Xiaobin. Relationship between axial tensile stress and strain of recycled aggregate concrete[J]. Engineering Journal of Wuhan University,2020,53(5):418-423(in Chinese).
    [30] NARAYANAN R, DARWISHI Y S. Use of steel fibers as shear reinforcement[J]. ACI Structural Journal,1987,84(3):216-227.
    [31] LIU F, DING W, QIAO Y. Experimental investigation on the tensile behavior of hybrid steel-PVA fiber reinforced concrete containing fly ash and slag powder[J]. Construction and Building Materials,2020,241:118000. doi: 10.1016/j.conbuildmat.2020.118000
  • 加载中
图(20) / 表(8)
计量
  • 文章访问数:  784
  • HTML全文浏览量:  411
  • PDF下载量:  42
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-05
  • 修回日期:  2022-06-22
  • 录用日期:  2022-06-23
  • 网络出版日期:  2022-07-07
  • 刊出日期:  2023-05-15

目录

    /

    返回文章
    返回