留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多层吸波体的设计、制备及其广角宽频吸收特性

杨超 叶永盛 叶喜葱 杨鹏 高琦 鄢堂明 吴海华 张云峰

杨超, 叶永盛, 叶喜葱, 等. 多层吸波体的设计、制备及其广角宽频吸收特性[J]. 复合材料学报, 2023, 40(11): 6202-6216. doi: 10.13801/j.cnki.fhclxb.20230117.008
引用本文: 杨超, 叶永盛, 叶喜葱, 等. 多层吸波体的设计、制备及其广角宽频吸收特性[J]. 复合材料学报, 2023, 40(11): 6202-6216. doi: 10.13801/j.cnki.fhclxb.20230117.008
YANG Chao, YE Yongsheng, YE Xicong, et al. Design, fabrication and wide-angle broadband absorption characteristics of the multilayer microwave absorber[J]. Acta Materiae Compositae Sinica, 2023, 40(11): 6202-6216. doi: 10.13801/j.cnki.fhclxb.20230117.008
Citation: YANG Chao, YE Yongsheng, YE Xicong, et al. Design, fabrication and wide-angle broadband absorption characteristics of the multilayer microwave absorber[J]. Acta Materiae Compositae Sinica, 2023, 40(11): 6202-6216. doi: 10.13801/j.cnki.fhclxb.20230117.008

多层吸波体的设计、制备及其广角宽频吸收特性

doi: 10.13801/j.cnki.fhclxb.20230117.008
基金项目: 国家自然科学基金(1216077);石墨增材制造技术与装备湖北省工程研究中心开放基金(HRCGAM202106);石墨增材制造宜昌市重点实验室开放基金(YKLGAM202005);2022年产业技术基础公共服务平台:面向工业母机的质量与可靠性试验检测评价服务平台(2022-232-223)
详细信息
    通讯作者:

    叶永盛,博士,讲师,硕士生导师,研究方向为先进材料成形制造 E-mail: yeyongsheng@ctgu.edu.cn

  • 中图分类号: TB34;TB333

Design, fabrication and wide-angle broadband absorption characteristics of the multilayer microwave absorber

Funds: National Natural Science Foundation of China (1216077); Open Fund of Hubei Engineering Research Center for Graphite Additive Manufacturing Technology and Equipment (HRCGAM202106); Open Fund of Yichang Key Laboratory of Graphite Additive Manufacturing (YKLGAM202005); 2022 Industrial Technology Foundation Public Service Platform: Quality and Reliability Test and Evaluation Service Platform Project for Industrial Mother Machine (2022-232-223)
  • 摘要: 3D打印技术为微波吸收结构提供了多尺度、多材料和多维度制造能力,可以充分发挥材料损耗和结构损耗相结合的优势。本文利用FeSiAl-MoS2-石墨烯(GN)/聚乳酸(PLA)复合线材制备了一种三层周期性十字交叉微波吸收结构,研究了各层材料组合和单元结构几何参数对复杂结构吸波性能的影响。仿真和实验结果表明:当介质层、吸收层和匹配层三层材料的石墨烯含量依次为0wt%、5wt%和4wt%时,吸波体的有效吸收带宽(EAB,反射损耗RL≤−10 dB)为12.7 GHz。同时当横电波(TE极化波)和横磁波(TM极化波)的入射角度分别小于40°和70°时,EAB均大于10 GHz。实验结果与仿真结果基本一致,本文为广角、宽频吸波体的设计和制造提供了理论和应用基础。

     

  • 图  1  十字交叉图案吸波结构示意图:(a)单元结构模型;(b)单元结构俯视图;(c)单元结构x=0截面处的主视图

    L—Side length of unit cell structure; d1—Thickness of bottom layer; d2—Thickness of absorbing layer; d3—Thickness of the positive cross; d4—Thickness of rotated 45° cross; a—Arm length of rotated 45° cross; b—Width of rotated 45° cross; c—Width of the positive cross

    Figure  1.  Schematic diagram of the crisscrossed pattern absorber: (a) Unit cell structure; (b) Top view of the unit cell structure; (c) Front view at section x=0 of the unit cell structure

    图  2  微波垂直入射时匹配层的材料对吸波结构吸波性能的影响

    Figure  2.  Effects of matching layer's material on microwave absorption performance of absorber when microwave is vertically incident

    图  3  微波垂直入射时吸收层的材料对吸波结构吸波性能的影响

    Figure  3.  Effects of absorbing layer’s material on microwave absorption performance of absorber when microwave is vertically incident

    图  4  9个吸波结构的Real (Zin/Z0)曲线 ((a)~(c)) 和Imag (Zin/Z0)曲线 ((d)~(f))

    Zin/Z0—Impedance matching

    Figure  4.  Real (Zin/Z0) curves ((a)-(c)) and Imag (Zin/Z0) curves ((d)-(f)) of nine absorbers

    图  5  9个吸波结构的吸波性能比较:(a) 有效吸收带宽;(b) 相对吸收带宽;(c) 平均吸收强度

    Figure  5.  Comparison of absorption properties of nine absorbers: (a) Effective absorption bandwidth; (b) Relative absorption bandwidth; (c) Average absorption intensity

    图  6  不同入射角下9个吸波体的有效吸收带宽:(a) 横电波(TE)极化;(b) 横磁波(TM)极化

    Figure  6.  Effective absorption bandwidth of nine absorbers at different incident angles: (a) Transverse electric wave (TE) polarization; (b) Transverse magnetic wave (TM) polarization

    图  7  微波斜入射时电场和磁场的方向:(a) TE极化;(b) TM极化;(c)不同极化角度下C2吸波体的反射损耗曲线

    H—Magnetic field component; E—Electric field component; k—Wave vector; θ—Angle of incidence of microwave; φ—Polarization angle of microwave

    Figure  7.  Directions of electric and magnetic fields when microwave are obliquely incident: (a) TE polarization; (b) TM polarization; (c) Reflection loss curves of C2 absorber at different polarization angles

    图  8  C2吸波体的单元结构几何参数优化:(a) d1;(b) d2;(c) d3;(d) d4;具有不同d4的C2吸波体的Real (Zin/Z0)曲线 (e) 和Imag (Zin/Z0)曲线 (f);(g) a;(h) b;(i) c

    Figure  8.  Optimization of geometric parameters of unit cell of C2 absorber: (a) d1; (b) d2; (c) d3; (d) d4; Real (Zin/Z0) curves (e) and Imag (Zin/Z0) curves (f) of C2 absorbers with various d4 thickness; (g) a; (h) b; (i) c

    图  9  十字交叉结构的吸波机制 (a)、等效多层模型 (b) 和等效电路图 (c)

    Zk—Characteristic impedance of the kth (k=1, 2, 3, 4) layer; Zink—Input impedance of the kth (k=1, 2, 3, 4) layer

    Figure  9.  Absorbing mechanism (a), equivalent multilayer model (b) and equivalent circuit diagram (c) of the crisscrossed structure

    图  10  C2吸波体与层板结构的反射损耗和阻抗匹配比较:(a) 反射损耗(RL)曲线;(b) Real (Zeff)曲线;(c) Imag (Zeff)曲线

    Zeff—Equivalent impedance

    Figure  10.  Comparison of reflection loss and impedance matching between C2 absorber and flat structure: (a) Reflection loss (RL) curves; (b) Real (Zeff) curves; (c) Imag (Zeff) curves

    图  11  C2吸波体内各层材料的微波功率损耗百分比

    Figure  11.  Percentage of microwave power loss of each layer in C2 absorber

    图  12  C2吸波体在谐振频率处的电场强度、磁场强度和功率损耗密度分布:(a) 6.72 GHz;(b) 9.23 GHz;(c) 15.74 GHz

    |E|—Electric field strength; |H|—Magnetic field strength

    Figure  12.  Distribution of electric field intensity, magnetic field intensity and power loss density of C2 absorber at resonance frequency: (a) 6.72 GHz; (b) 9.23 GHz; (c) 15.74 GHz

    图  13  (a) 吸波体的测试样品;(b) 实验结果与仿真结果对比

    Figure  13.  (a) Test sample of the proposed absorber; (b) Comparison between the experimental results and simulation results

    表  1  FeSiAl-MoS2-石墨烯(GN)/聚乳酸(PLA)复合线材的成分

    Table  1.   Compositions of FeSiAl-MoS2-graphene (GN)/polylactic acid (PLA) composite filaments

    MaterialMass fraction/wt%
    GNFeSiAlMoS2PLA
    22 FSA-8 MS/PLA022870
    22 FSA-8 MS-3 GN/PLA322867
    22 FSA-8 MS-4 GN/PLA422866
    22 FSA-8 MS-5 GN/PLA522865
    下载: 导出CSV

    表  2  吸波结构的各层材料组合方案

    Table  2.   Material combination scheme of each layer of absorbers

    AbsorberDielectric layerAbsorbing layerMatching layer
    A122 FSA-8 MS/PLA22 FSA-8 MS-3 GN/PLA22 FSA-8 MS-3 GN/PLA
    A222 FSA-8 MS-3 GN/PLA22 FSA-8 MS-4 GN/PLA
    A322 FSA-8 MS-3 GN/PLA22 FSA-8 MS-5 GN/PLA
    B122 FSA-8 MS-4 GN/PLA22 FSA-8 MS-3 GN/PLA
    B222 FSA-8 MS-4 GN/PLA22 FSA-8 MS-4 GN/PLA
    B322 FSA-8 MS-4 GN/PLA22 FSA-8 MS-5 GN/PLA
    C122 FSA-8 MS-5 GN/PLA22 FSA-8 MS-3 GN/PLA
    C222 FSA-8 MS-5 GN/PLA22 FSA-8 MS-4 GN/PLA
    C322 FSA-8 MS-5 GN/PLA22 FSA-8 MS-5 GN/PLA
    下载: 导出CSV

    表  3  文献中报道的结构吸波材料的吸波性能

    Table  3.   Absorption properties of structural absorbing materials reported in the literature

    StructureFabrication methodMaterialsThickness/mmRLmin/dBEAB/GHzRef.
    Sandwich honeycomb structure Impregnation processes CIP/CB/EP 5.0 −28.00 9.80 [9]
    Stepped structure Templating method and pyrolysis method SiC/C foam 10.0 14.00 [12]
    Stepped structure Two-step molding MWCNT/CIP/EP 7.0 −55.00 30.00 [16]
    Flexible honeycomb structure SLS and impregnation processes CF/PA powers
    and CIP
    6.0 −47.00 13.20 [18]
    Gradient woodpile structure DIW CIGG 94.6 −46.47 14.62 [21]
    Gratings coat metastructure Coating CNT gratings,
    ASCFB and cement
    23.4 −38.70 14.20 [34]
    Periodic hollow truncated cone structure SLA and impregnation processes PHR and CCP 25.0 −19.53 16.31 [43]
    Sandwich structure Pressure GF/EP and FN/BRN 7.0 −25.00 3.20 [44]
    Three-layer flat structure FDM GN/PLA 4.0 −30.00 4.70 [45]
    Periodic crisscrossed
    pattern structure
    FDM FeSiAl-MoS2−GN/PLA 8.5 −20.50 12.70 This work
    Notes: GF/EP—Glass fiber/epoxy resin; FN/BRN—Fe50 Ni50/butyl rubber nanocomposite; CNT—Carbon nanotube; ASCFB—Aluminum silicate ceramic fiberboard; CF/PA—Carbon fiber nylon powders; CIP—Carbonyl iron powder; CB—Carbon black; MWCNT—Multi-walled carbon nanotubes; CIGG—Carbonyl-iron/graphene geopolymer composite; PHR—Photosensitive resin; CCP—Conductive carbon paste; GN—Graphene; SLS—Selection laser sintering; DIW—Direct ink writing; SLA—Stereolithography apparatus; FDM—Fused deposition modeling; RLmin—Minimum reflection loss; EAB—Effective absorption bandwidth.
    下载: 导出CSV
  • [1] CHANG Y P, WEI X L, HAN X M, et al. Study on electromagnetic scattering characteristics of inductively coupled plasma superimposed honeycomb absorbing structure[J]. Vacuum,2022,196:110761. doi: 10.1016/j.vacuum.2021.110761
    [2] 马瑶, 王建宝, 石立华, 等. 一款透明柔性超材料宽频微波吸收器[J]. 复合材料学报, 2022, 39(4):1601-1609. doi: 10.13801/j.cnki.fhclxb.20210525.001

    MA Yao, WANG Jianbao, SHI Lihua, et al. A wideband, transparent and flexible microwave metamaterial absorber[J]. Acta Materiae Compositae Sinica,2022,39(4):1601-1609(in Chinese). doi: 10.13801/j.cnki.fhclxb.20210525.001
    [3] CHEN Z M, ZHANG Y, WANG Z D, et al. Bioinspired motheye multi-mechanism composite ultra-wideband microwave absorber based on the graphite powder[J]. Carbon,2023,201:542-548. doi: 10.1016/j.carbon.2022.09.035
    [4] 王强, 王岩, 黄小忠, 等. 新型全介质谐振表面二元超材料吸波体[J]. 材料导报, 2019, 33(2):363-367. doi: 10.11896/cldb.201902030

    WANG Qiang, WANG Yan, HUANG Xiaozhong, et al. A novel binary metamaterial absorber using all-dielectric resonance surface[J]. Materials Reports,2019,33(2):363-367(in Chinese). doi: 10.11896/cldb.201902030
    [5] 王彦朝, 许河秀, 王朝辉, 等. 电磁超材料吸波体的研究进展[J]. 物理学报, 2020, 69(13): 39-51.

    WANG Yanzhao, XU Hexiu, WANG Chaohui, et al. Research progress of electromagnetic metamaterial absorbers[J]. Acta Physica Sinica, 2020, 69(13): 39-51(in Chinese).
    [6] 杜宏艳, 张子栋, 田瑞, 等. 基于人工电磁介质的宽带吸波器研究进展[J]. 材料工程, 2020, 48(6): 23-33.

    DU Hongyan, ZHANG Zidong, TIAN Rui, et al. Research progress in broadband absorber based on artificial electromagnetic medium[J]. Journal of Materials Engineering, 2020, 48(6): 23-33(in Chinese).
    [7] YANG Z, LIANG Q X, DUAN Y B, et al. A 3D-printed lightweight broadband electromagnetic absorbing metastructure with preserved high-temperature mechanical pro-perty[J]. Composite Structures,2021,274:114330. doi: 10.1016/j.compstruct.2021.114330
    [8] 王凤琳, 张娜, 包建军, 等. 基于图案化和超表面结构制备高效宽频吸波材料[J]. 高分子材料科学与工程, 2022, 38(1):131-136.

    WANG Fenglin, ZHANG Na, BAO Jianjun, et al. Preparation of efficient broadband absorbing materials based on patterning and metamaterial surface[J]. Polymer Materials Science and Engineering,2022,38(1):131-136(in Chinese).
    [9] PANG H F, DUAN Y P, DAI X H, et al. The electromagnetic response of composition-regulated honeycomb structural materials used for broadband microwave absorption[J]. Journal of Materials Science and Technology,2021,88:203-214. doi: 10.1016/j.jmst.2021.01.072
    [10] WANG H, XIU X, WANG Y, et al. Paper-based composites as a dual-functional material for ultralight broadband radar absorbing honeycombs[J]. Composites Part B: Engineering,2020,202:108378. doi: 10.1016/j.compositesb.2020.108378
    [11] FENG L, LI W C, WANG Y. Broadband electromagnetic wave absorbing metamaterial based on FeSiAl alloy[J]. Journal of Magnetism and Magnetic Materials,2022,541:168510. doi: 10.1016/j.jmmm.2021.168510
    [12] LI W C, LI C S, LIN L H, et al. All-dielectric radar absorbing array metamaterial based on silicon carbide/carbon foam material[J]. Journal of Alloys and Compounds,2019,781:883-891. doi: 10.1016/j.jallcom.2018.12.010
    [13] ZHOU Q, YIN X W, YE F, et al. A novel two-layer periodic stepped structure for effective broadband radar electromagnetic absorption[J]. Materials and Design,2017,123:46-53. doi: 10.1016/j.matdes.2017.03.044
    [14] LUO H, CHEN F, WANG X, et al. A novel two-layer honeycomb sandwich structure absorber with high-performance microwave absorption[J]. Composites Part A: Applied Science and Manufacturing,2019,119:1-7. doi: 10.1016/j.compositesa.2019.01.015
    [15] ZHANG K L, ZHANG J Y, HOU Z L, et al. Multifunctional broadband microwave absorption of flexible graphene composites[J]. Carbon,2019,141:608-617. doi: 10.1016/j.carbon.2018.10.024
    [16] HUANG Y X, SONG W L, WANG C X, et al. Multi-scale design of electromagnetic composite metamaterials for broadband microwave absorption[J]. Composites Science and Technology,2018,162:206-214. doi: 10.1016/j.compscitech.2018.04.028
    [17] CHEN X Q, WU Z, ZHANG Z L, et al. Ultra-broadband and wide-angle absorption based on 3D-printed pyramid[J]. Optics and Laser Technology,2020,124:105972. doi: 10.1016/j.optlastec.2019.105972
    [18] GONG P, HAO L, LI Y, et al. 3D-printed carbon fiber/polyamide-based flexible honeycomb structural absorber for multifunctional broadband microwave absorption[J]. Carbon,2021,185:272-281. doi: 10.1016/j.carbon.2021.09.014
    [19] MEI H, YANG W Q, ZHAO X, et al. In-situ growth of SiC nanowires@carbon nanotubes on 3D printed metamaterial structures to enhance electromagnetic wave absorption[J]. Materials and Design,2021,197:109271. doi: 10.1016/j.matdes.2020.109271
    [20] QUAN B, GU W H, SHENG J Q, et al. From intrinsic dielectric loss to geometry patterns: Dual-principles strategy for ultrabroad band microwave absorption[J]. Nano Research,2021,14(5):1495-1501.
    [21] LI Z, LI Y, SHI B, et al. Dual gradient direct ink writing of functional geopolymer-based carbonyl-iron/graphene composites for adjustable broadband microwave absorption[J]. Ceramics International,2022,48(7):9277-9285. doi: 10.1016/j.ceramint.2021.12.114
    [22] GONG P, LI Y, XIN C X, et al. Multimaterial 3D-printing barium titanate/carbonyl iron composites with bilayer-gradient honeycomb structure for adjustable broadband microwave absorption[J]. Ceramics International,2022,48:9873-9881. doi: 10.1016/j.ceramint.2021.12.190
    [23] 李涤尘, 鲁中良, 田小永, 等. 增材制造—面向航空航天制造的变革性技术[J]. 航空学报, 2022, 43(4):525387. doi: 10.7527/j.issn.1000-6893.2022.4.hkxb202204004

    LI Dichen, LU Zhongliang, TIAN Xiaoyong, et al. Additive manufacturing—Revolutionary technology for leading aerospace manufacturing[J]. Acta Aeronautica et Astronautica Sinica,2022,43(4):525387(in Chinese). doi: 10.7527/j.issn.1000-6893.2022.4.hkxb202204004
    [24] YANG Z H, WU H H, ZHANG R J, et al. Effect of graphene/spherical graphite ratio on the properties of PLA/TPU composites[J]. Polymers,2022,14(13):2538. doi: 10.3390/polym14132538
    [25] LEI L, YAO Z J, ZHOU J T, et al. 3D printing of carbon black/polypropylene composites with excellent microwave absorption performance[J]. Composites Science and Technology,2020,200:108479. doi: 10.1016/j.compscitech.2020.108479
    [26] YIN L X, TIAN X Y, SHANG Z T, et al. Ultra-broadband metamaterial absorber with graphene composites fabricated by 3D printing[J]. Materials Letters,2019,239:132-135. doi: 10.1016/j.matlet.2018.12.087
    [27] JING J J, XIONG Y, SHI S H, et al. Facile fabrication of lightweight porous FDM-printed polyethylene/graphene nanocomposites with enhanced interfacial strength for electromagnetic interference shielding[J]. Composites Science and Technology,2021,207:108732. doi: 10.1016/j.compscitech.2021.108732
    [28] 胡正浪, 吴海华, 杨增辉, 等. 石墨烯-铁镍合金-聚乳酸复合材料的制备及其吸波性能[J]. 复合材料学报, 2022, 39(7):3303-3316. doi: 10.13801/j.cnki.fhclxb.20210903.004

    HU Zhenglang, WU Haihua, YANG Zenghui, et al. Preparation of graphene-iron-nickel alloy-polylactic acid compo-sites and their microwave absorption properties[J]. Acta Materiae Compositae Sinica,2022,39(7):3303-3316(in Chinese). doi: 10.13801/j.cnki.fhclxb.20210903.004
    [29] PEI Z, XU Y G, WEI F M, et al. Electromagnetic property of a novel gradient honeycomb composite fabricated by 3D forming[J]. Journal of Magnetism and Magnetic Materials,2020,493:165742. doi: 10.1016/j.jmmm.2019.165742
    [30] LIU T, XU Y G, ZHENG D L, et al. Fabrication and absorbing property of the tower-like absorber based on 3D printing process[J]. Physica B: Condensed Matter,2019,553:88-95. doi: 10.1016/j.physb.2018.10.038
    [31] REN J, YIN J Y. 3D-printed low-cost dielectric-resonator-based ultra-broadband microwave absorber using carbon-loaded acrylonitrile butadiene styrene polymer[J]. Materials,2018,11(7):1249. doi: 10.3390/ma11071249
    [32] 叶喜葱, 杨超, 欧阳宾, 等. 石墨烯增强FeSiAl-MoS2/PLA复合材料吸波性能[J]. 复合材料学报, 2023, 40(2): 911-928.

    YE Xicong, YANG Chao, OUYANG Bin, et al. Graphene-enhanced electromagnetic wave absorbing properties of FeSiAl-MoS2/PLA composites[J]. Acta Materiae Compositae Sinica, 2023, 40(2): 911-928(in Chinese).
    [33] LI S N, SHEN Z L, YIN W, et al. 3D printed cross-shaped terahertz metamaterials with single-band, multi-band and broadband absorption[J]. Optical Materials,2021,122:111739. doi: 10.1016/j.optmat.2021.111739
    [34] WANG X R, LI Q H, LAI H X, et al. Broadband microwave absorption enabled by a novel carbon nanotube gratings/cement composite metastructure[J]. Composites Part B: Engineering,2022,242:110071. doi: 10.1016/j.compositesb.2022.110071
    [35] WEI B, ZHOU C Y, YAO Z J, et al. Encapsulation of high specific surface area red blood cell-like mesoporous carbon spheres by magnetic nanoparticles: A new strategy to realize multiple electromagnetic wave loss mechanism[J]. Carbon,2021,184:232-244. doi: 10.1016/j.carbon.2021.08.029
    [36] SUN H D, ZHANG Y, WU Y, et al. Broadband absorption of macro pyramid structure based flame retardant absorbers[J]. Journal of Materials Science & Technology,2022,128:228-238.
    [37] SHEN Y, ZHANG J Q, PANG Y Q, et al. Thermally tunable ultra-wideband metamaterial absorbers based on three-dimensional water-substrate construction[J]. Scientific Reports,2018,8:4423. doi: 10.1038/s41598-018-22163-6
    [38] NING J, DONG S F, LUO X Y, et al. Ultra-broadband microwave absorption by ultra-thin metamaterial with stepped structure induced multi-resonances[J]. Results in Physics,2020,18:103320.
    [39] HE L, LI X, ZHAO Y C, et al. The multilayer structure design of magnetic-carbon composite for ultra-broadband microwave absorption via PSO algorithm[J]. Journal of Alloys and Compounds,2022,913:165088. doi: 10.1016/j.jallcom.2022.165088
    [40] WANG C X, CHEN M J, LEI H S, et al. Frequency-selective-surface based sandwich structure for both effective loadbearing and customizable microwave absorption[J]. Composite Structures,2020,235:111792.
    [41] SUN H D, ZHANG Y, WU Y E, et al. Broadband and high-efficiency microwave absorbers based on pyramid structure[J]. ACS Applied Materials & Interfaces,2022,14(46):52182-52192.
    [42] DENG G S, CHEN W Q, YU Z C, et al. 3D-printed dielectric-resonator-based ultra-broadband microwave absorber using water substrate[J]. Journal of Electronic Materials,2022,51(5):2221-2227. doi: 10.1007/s11664-022-09439-4
    [43] HUANG H M, WANG W, HUA M Y, et al. Broadband radar absorbing characteristic based on periodic hollow truncated cone structure[J]. Physica B: Physics of Condensed Matter,2020,595:412368. doi: 10.1016/j.physb.2020.412368
    [44] YUAN Z F, ZHAO H, ZHOU J. Design and preparation of the epoxy resin based sandwich composite with broad-band wave-absorbing properties in C-band[J]. Rare Metal Materials and Engineering,2020,49(11):3782-3789.
    [45] 吴海华, 蔡宇, 刘力, 等. 基于熔融沉积成型的多层石墨烯吸波体的快速制备及其性能[J]. 激光与光电子学进展, 2020, 57(1):191-197.

    WU Haihua, CAI Yu, LIU Li, et al. Rapid preparation and properties of multi-layer graphene absorber using fused deposition modeling[J]. Laser & Optoelectronics Progress,2020,57(1):191-197(in Chinese).
  • 加载中
图(13) / 表(3)
计量
  • 文章访问数:  611
  • HTML全文浏览量:  393
  • PDF下载量:  60
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-07
  • 修回日期:  2022-12-15
  • 录用日期:  2023-01-09
  • 网络出版日期:  2023-02-01
  • 刊出日期:  2023-11-01

目录

    /

    返回文章
    返回