留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

具有优异光激发NO2气敏性能和MB光催化降解效率的ZnO-MoS2纳米复合材料

孙翼飞 余飞 袁欢 徐明 张秋平 宋曼 黎健鸿 柏明辉

孙翼飞, 余飞, 袁欢, 等. 具有优异光激发NO2气敏性能和MB光催化降解效率的ZnO-MoS2纳米复合材料[J]. 复合材料学报, 2023, 40(6): 3428-3440. doi: 10.13801/j.cnki.fhclxb.20220906.003
引用本文: 孙翼飞, 余飞, 袁欢, 等. 具有优异光激发NO2气敏性能和MB光催化降解效率的ZnO-MoS2纳米复合材料[J]. 复合材料学报, 2023, 40(6): 3428-3440. doi: 10.13801/j.cnki.fhclxb.20220906.003
SUN Yifei, YU Fei, YUAN Huan, et al. ZnO-MoS2 nano-composites with excellent light-activated NO2 gas sensitivity and MB photocatalytic degradation efficiency[J]. Acta Materiae Compositae Sinica, 2023, 40(6): 3428-3440. doi: 10.13801/j.cnki.fhclxb.20220906.003
Citation: SUN Yifei, YU Fei, YUAN Huan, et al. ZnO-MoS2 nano-composites with excellent light-activated NO2 gas sensitivity and MB photocatalytic degradation efficiency[J]. Acta Materiae Compositae Sinica, 2023, 40(6): 3428-3440. doi: 10.13801/j.cnki.fhclxb.20220906.003

具有优异光激发NO2气敏性能和MB光催化降解效率的ZnO-MoS2纳米复合材料

doi: 10.13801/j.cnki.fhclxb.20220906.003
基金项目: 西南民族大学研究生创新型科研项目(CX2021 SZ44);国家自然科学基金青年科学基金(61901401)
详细信息
    通讯作者:

    余飞,博士,副教授,硕士生导师,研究方向为氧化物功能材料 E-mail: yufei@swun.edu.cn

    袁欢,博士,副教授,硕士生导师,研究方向为光敏传感器件 E-mail: yuanh@uestc.edu.cn

  • 中图分类号: O643.3,TB34;TB331

ZnO-MoS2 nano-composites with excellent light-activated NO2 gas sensitivity and MB photocatalytic degradation efficiency

Funds: Southwest Minzu University Graduate Innovative Research Fund (CX2021 SZ44); National Natural Science Foundation of China (61901401)
  • 摘要: 实现对有毒、有害气体的有效监测和对有机污染物的快速降解,对于减少大气污染和水污染所带来的危害至关重要。本研究采用超声复合方法将溶胶凝胶法制备的ZnO和水热法制备的MoS2复合到一起,成功制备了ZnO-MoS2纳米复合材料。采用XRD、SEM、TEM、XPS等手段对材料结构、形貌和表面化学组分进行表征。结果表明,多层片状MoS2均匀负载到了ZnO纳米颗粒当中,复合材料具有较好的结晶性和丰富的表面缺陷。利用紫外-可见(UV-vis)漫反射光谱、光致发光光谱(PL)和表面光电压(SPV)对材料的光电性能进行了测试。结果表明,ZnO与MoS2的复合在提升光利用率的同时,能够促进光生载流子的更有效分离。以NO2作为目标气体的室温紫外光辅助气敏测试表明,本方法制备的ZnO-MoS2气体传感器具有良好的灵敏度、恢复性、稳定性和选择性,可在室温下实现对低浓度NO2的有效响应,MoS2复合量为5wt%的ZnO-MoS2传感器对0.47 mg/m3 NO2的响应值为19.6%。同时,气敏性能研究还发现空气中O2分子在材料表面的吸附会对传感器的气敏性能产生较大的影响,ZnO-MoS2传感器在无氧条件下对NO2具有更高的气敏响应。此外,在模拟太阳光下进行的光催化降解亚甲基蓝(MB)的实验表明,依靠吸附和光催化降解的共同作用,ZnO-MoS2复合材料能够在40 min内实现水溶液当中较高浓度MB (15 mg/L)的快速清除,MoS2复合量为10wt%的ZnO-MoS2样品的反应速率常数达到了0.032 min−1。对机制的分析表明,MoS2较好的吸附性和复合所导致的光生载流子分离率的提升是ZnO-MoS2复合材料气敏和光催化性能提升的关键。

     

  • 图  1  气敏测试示意图

    Figure  1.  Schematic diagram of gas sensitivity test

    LED—Light emitting diode; UV—Ultra violet

    图  2  ZnO和ZnO-MoS2样品的XRD图谱

    Figure  2.  XRD patterns of ZnO and ZnO-MoS2 samples

    图  3  ZnO (a)、MoS2 (b)、ZnO-5MoS2 ((c), (d))、ZnO-10MoS2 ((e), (f)) 和ZnO-20MoS2 ((g), (h)) 的SEM图像

    Figure  3.  SEM images of ZnO (a), MoS2 (b), ZnO-5MoS2 ((c), (d)), ZnO-10MoS2 ((e), (f)) and ZnO-20MoS2 ((g), (h))

    图  4  ZnO-20MoS2样品的TEM图像

    Figure  4.  TEM images of ZnO-20MoS2 sample

    图  5  ZnO-20MoS2样品的XPS图谱:(a) Zn2p;(b) O1s;(c) S2p;(d) Mo3d

    Figure  5.  XPS spectra of ZnO-20MoS2 sample: (a) Zn2p; (b) O1s; (c) S2p; (d) Mo3d

    OL—Lattice oxygen; OV—Vacant oxygen; OC—Chemisorbed oxygen

    图  6  ZnO和ZnO-MoS2样品的UV-vis吸收图谱

    Figure  6.  UV-vis absorption spectra of ZnO and ZnO-MoS2 samples

    图  7  ZnO和ZnO-MoS2样品的光致发光图谱

    Figure  7.  Photoluminescence spectra of ZnO and ZnO-MoS2 samples

    图  8  ZnO和ZnO-MoS2样品的表面光电压图谱

    Figure  8.  Surface photovoltage spectra of ZnO and ZnO-MoS2 samples

    图  9  (a) 室温紫外光照射下,ZnO和ZnO-MoS2传感器对0.47~2.35 mg/m3浓度NO2的动态响应曲线(干燥空气作为背景气体);(b) 4组传感器的响应-浓度曲线;(c) 4组传感器恢复率与浓度之间的关系

    Figure  9.  (a) Time-dependent response curves of ZnO, and ZnO-MoS2 sensors to 0.47-2.35 mg/m3 NO2 at room temperature with the irradiation of UV light (Dry air as background gas); (b) Response-concentration curves of four sensors; (c) Recovery rate-concentration plots of four sensors

    Rg—Measuring the resistance; R0—Initial resistance; Rec—Percentage of recovery rate; Response—Response intensity; C—Concentration

    图  10  (a) 室温紫外光照射下,ZnO和ZnO-MoS2传感器对2.35 mg/m3浓度NO2的5次重复动态响应曲线(干燥空气作为背景气体);(b) ZnO-5MoS2气体传感器对不同气体的选择性测试

    Figure  10.  (a) Repeated time-dependent response curves of ZnO and ZnO-MoS2 sensors to 2.35 mg/m3 NO2 in five cycles at room temperature with the irradiation of UV light (Dry air as background gas); (b) Selectivity test of ZnO-5MoS2 gas sensor for different gases

    图  11  ZnO-MoS2气敏机制图

    Figure  11.  Gas sensing mechanism illustration for ZnO-MoS2

    图  12  (a) 氮气作为背景气体四种传感器对0.47~2.35mg/m3 NO2的动态响应曲线;(b) ZnO-5MoS2气体传感器分别在空气与氮气作为背景气体时对0.47~2.35mg/m3的动态响应曲线

    Figure  12.  (a) Time-dependent response curves of the four sensors to 0.47~2.35 mg/m3 NO2 with nitrogen as background gas; (b) Time-dependent response curves of ZnO-5MoS2 gas sensor to 0.47~2.35 mg/m3 NO2 with air and nitrogen as background gas respectively

    图  13  (a) ZnO及ZnO-MoS2样品在暗环境中吸附和在模拟太阳光照射下光催化降解亚甲基蓝(MB)的曲线;(b) 光照20 min时4种样品对于MB的清除效率;(c) 光照前20 min 4种样品降解MB的反应速率常数;(d) 模拟太阳光照射下添加不同牺牲剂后ZnO-10MoS2样品降解MB的反应速率常数

    Figure  13.  (a) Dark adsorption and photocatalytic degradation of methylene blue (MB) with the ZnO and ZnO-MoS2 samples under simulated sunlight irradiation; (b) MB removal efficiency for four samples after 20 min irradiation; (c) Reaction rate constants of four samples for the first 20 min of irradiation; (d) Reaction rate constants of ZnO-10MoS2 for photodegradation of MB with different sacrificial agents under the simulated sunlight irradiation

    IPA—Isopropyl alcohol; EDTA-2Na—Edetate disodium; BQ—Benzoquinone; K—Reaction rate constant (min−1); C0—Initial concentration; Ct—Concentration at time t

    表  1  ZnO-MoS2 样品成分配比

    Table  1.   Composition proportion of ZnO-MoS2 samples

    Sample Mass of ZnO/g Mass of MoS2/g
    ZnO-5MoS2 0.95 0.05
    ZnO-10MoS2 0.90 0.10
    ZnO-20MoS2 0.80 0.20
    下载: 导出CSV

    表  2  不同复合材料的NO2气敏性能

    Table  2.   NO2 gas sensing performance of different composite materials

    Sensor materialsGas concentration/(mg·m3)Operation temperature/℃ResponseRef.
    ZnO-MoS2 NWs 94 200 31.2% [17]
    Ag-Fe2O3-MoS2 1.88 120 70.8% [34]
    MoS2-SnS2 9.4 25 60% [35]
    Au-MoS2 4.7 25 30% [36]
    CuO-ZnO 188 150 96% [37]
    ZnO-RGO 9.4 25 7% [38]
    ZnO-5MoS2 2.35 25 85.1% This work
    Notes: NWs—Nanowires; RGO—Reduced graphene oxide.
    下载: 导出CSV

    表  3  不同ZnO基材料光催化降解MB对比

    Table  3.   Comparison of photocatalytic efficiency of ZnO based composites for the degradation of MB

    PhotocatalystIrradiation
    Source
    Pollutant
    concentration/(mg·L−1)
    Irradiation time/minRef.
    ZnO-RGO UV 5 ~300 [41]
    ZnO-RGO-CdS UV 30 240 [42]
    ZnO-MoS2 Simulated sunlight 30 300 [19]
    ZnO-MoS2 Simulated sunlight 5 50 [20]
    ZnO-MoS2 UV 10 120 [21]
    ZnO-10MoS2 Simulated sunlight 15 40 This work
    下载: 导出CSV
  • [1] EVANS A E, MATEO-SAGASTA J, QADI R M, et al. Agricultural water pollution: Key knowledge gaps and research needs[J]. Current Opinion in Environmental Sustainability,2019,36:20-27. doi: 10.1016/j.cosust.2018.10.003
    [2] MANNUCCI P M, HARARI S, MARTINE-LLI I, et al. Effects on health of air pollution: A narrative review[J]. Internal and Emergency Medicine,2015,10(6):657-662.
    [3] MEHDI AGHAEI S, AASI A, PANCHA-PAKESAN B, et al. Experimental and theoretical advances in MXene-based gas sensors[J]. ACS Omega,2021,6(4):2450-2461. doi: 10.1021/acsomega.0c05766
    [4] SHINDHAL T, RAKHOLIYA P, VARJANI S, et al. A critical review on advances in the practices and perspectives for the treatment of dye industry wastewater[J]. Bioengi-neered,2021,12(1):70-87. doi: 10.1080/21655979.2020.1863034
    [5] SONG Z, ZHANG J, JIANG J. Morphological evolution, luminescence properties and a high-sensitivity ethanol gas sensor based on 3 D flower-like MoS2–ZnO micro/nanosphere arrays[J]. Ceramics International,2020,46(5):6634-6640.
    [6] YAO C, WU L, LI H, et al. WS2 coating and Au nanoparticle decoration of ZnO nanorods for improving light-activated NO2 sensing[J]. Applied Surface Science, 2022, 584: 152508.
    [7] WANG Z, ZHANG T, ZHAO C, et al. Anchoring ultrafine Pd nanoparticles and SnO2 nanoparticles on reduced graphene oxide for high-performance room temperature NO2 sensing[J]. Journal of Colloid and Interface Science, 2018, 514(2): 599–608.
    [8] 陈奕桦, 胡俊俊, 丁同悦, 等. CeO2/ZnO 复合光催化剂制备及其可见光催化性能[J]. 复合材料学报, 2021, 38(9):3008-3015.

    CHEN Yihua, HU Junjun, DING Tongyue, et al. Preparation and visible light catalytic performance of CeO2/ZnO composite photocatalyst[J]. Acta Materiae Compositae Sinica,2021,38(9):3008-3015(in Chinese).
    [9] SCHÜTT F, POSTICA V, ADELUNG R, et al. Single and networked ZnO-CNT hybrid tetrapods for selective room-temperature high-performance ammonia sensors[J]. ACS Applied Materials and Interfaces, 2017, 9(27): 23107-23118.
    [10] GOKTAS S, GOKTAS A. A comparative study on recent progress in efficient ZnO based nanocomposite and heterojunction photocatalysts: A review[J]. Journal of Alloys and Compounds,2021,863:158734.
    [11] GENG X, ZHANG C, DEBLIQUY M. Cadmium sulfide activated zinc oxide coatings deposited by liquid plasma spray for room temperature nitrogen dioxide detection under visible light illumination[J]. Ceramics International,2016,42(4):4845-4852. doi: 10.1016/j.ceramint.2015.11.170
    [12] 王儒杰, 余锡孟, 王芳芳, 等. 竹炭基铈掺杂氧化锌制备及催化降解亚甲基蓝[J]. 复合材料学报, 2021, 38(6): 1896-1910.

    WANG Rujie, YU Ximeng, WANG Fangfang, et al. Preparation of carbon supported cerium doped zinc oxide composite material and its photocatalytic propertiesstudy in degradation of methylene blue dye[J]. Acta Materiae Compositae Sinica, 2021, 38(6): 1896-1910(in Chinese).
    [13] LI Y, CHEN H, WANG L, et al. KNbO3/ZnO heterojunction harvesting ultrasonic mechanical energy and solar energy to efficiently degrade methyl orange[J]. Ultrasonics Sonochemistry,2021,78:105754.
    [14] QAMAR M A, SHAHID S, JAVED M, et al. Highly efficient g-C3N4/Cr-ZnO nanocomposites with superior photocatalytic and antibacterial activity[J]. Journal of Photochemistry and Photobiology A: Chemistry,2020,401:112776.
    [15] KRISHNAN U, KAUR M, SINGH K, et al. A synoptic review of MoS2: Synthesis to applications[J]. Superlattices and Microstructures,2019,128:274-297. doi: 10.1016/j.spmi.2019.02.005
    [16] GAO X, YAO Y, MENG X. Recent development on BN-based photocatalysis: A review[J]. Materials Science in Semiconductor Processing,2020,120:1052-56.
    [17] ZHAO S, WANG G, LIAO J, et al. Vertically aligned MoS2/ZnO nanowires nanostructures with highly enhanced NO2 sensing activities[J]. Applied Surface Science,2018,456(2):808-816.
    [18] WANG S, CHEN W, LI J, et al. Low working temperature of ZnO-MoS2 nanocomposites for delaying aging with good acetylene gas-sensing properties[J]. Nanomaterials, 2020, 10(10): 1902.
    [19] BENAVENTE E, DURÁN F, SOTOMAYORTORRES C, et al. Heterostructured layered hybrid ZnO/MoS2 nanosheets with enhanced visible light photocatalytic activity[J]. Journal of Physics and Chemistry of Solids,2018,113:119-124. doi: 10.1016/j.jpcs.2017.10.027
    [20] FU Y, REN Z, WU J, et al. Direct Z-scheme heterojunction of ZnO/MoS2 nanoarrays realized by flowing-induced piezoelectric field for enhanced sunlight photocatalytic performances[J]. Applied Catalysis B: Environmental,2021,285(1):119785.
    [21] SELVARAJ R, KALIMUTHU K R, KALIMUTHU V. A type-II MoS2/ZnO heterostructure with enhanced photocatalytic activity[J]. Materials Letters,2019,243:183-186.
    [22] HUNGE Y M, YADAV A A, MATHE V L. Ultrasound assisted synthesis of WO3-ZnO nanocomposites for brilliant blue dye degradation[J]. Ultrasonics Sonochemistry,2018,45:116-122.
    [23] MA Q, HAN X M, LV K, et al. Ultrasound-enhanced preparation and photocatalytic properties of graphene-ZnO nanorod composite[J]. Separation and Purification Technology,2020,259(1):118-131.
    [24] DONG H, LI J, CHEN M, et al. High-throughput production of ZnO-MoS2-graphene hetero-structures for highly efficient photocatalytic hydrogen evolution[J]. Materials, 2019, 12(14): 2233.
    [25] KUMAR V, SHUKLA R K, SHAKYA J. Effect of ultraviolet irradiation on photo-physical and surface electronic properties of MoS2[J]. Journal of Nanoscience and Nanotechnology,2020,20(10):6500-6504. doi: 10.1166/jnn.2020.18581
    [26] WANG J, DENG J, LI Y, et al. ZnO nanocrystal-coated MoS2 nanosheets with enhanced ultraviolet light gas sensitive activity studied by surface photovoltage technique[J]. Ceramics International,2020,46(8):11427-11431.
    [27] ZHANG G, LANG J, ZHANG Q, et al. Defects driven photoluminescence property of Sm-doped ZnO porous nanosheets via a hydrothermal approach[J]. Journal of Materials Science: Materials in Electronics,2018,29(19):16534-16542. doi: 10.1007/s10854-018-9747-z
    [28] YE Z, TAI H, XIE T, et al. Room temperature formaldehyde sensor with enhanced performance based on reduced graphene oxide/titanium dioxide[J]. Sensors and Actuators, B: Chemical,2016,223:149-156. doi: 10.1016/j.snb.2015.09.102
    [29] LIU Y, ZHANG Q, XU M, et al. Novel and efficient synthesis of Ag-ZnO nanoparticles for the sunlight-induced photocatalytic degradation[J]. Applied Surface Science,2019,476:632-640. doi: 10.1016/j.apsusc.2019.01.137
    [30] GAO X, WEN Y, QU D, et al. Interference effect of alcohol on Nessler’s reagent in photocatalytic nitrogen fixation[J]. ACS Sustainable Chemistry and Engineering,2018,6(4):5342-5348. doi: 10.1021/acssuschemeng.8b00110
    [31] GE L, HAN C, XIAO X, et al. Synthesis and characterization of composite visible light active photocatalysts MoS2-g-C3N4 with enhanced hydrogen evolution activity[J]. International Journal of Hydrogen Energy,2013,38(17):6960-6969.
    [32] LUO K, ZHANG Q, YUAN H, et al. Facile synthesis of Ag/Zn1-xCuxO nanoparticle compound photocatalyst for highefficiency photocatalytic degradation: Insights into the synergies and antagonisms between Cu and Ag[J]. Ceramics International, 2021, 47(1): 48-56.
    [33] KO K Y, SONG J G, KIM Y, et al. Improvement of gas-sensing performance of large-area tungsten disulfide nanosheets by surface functionalization[J]. ACS Nano,2016,10(10):9287-9296.
    [34] YIN M, WANG Y, YU L, et al. Ag nanoparticles-modified Fe2O3@MoS2 core-shell micro/nanocomposites for high-performance NO2 gas detection at low temperature[J]. Journal of Alloys and Compounds,2020,829:154471. doi: 10.1016/j.jallcom.2020.154471
    [35] LIU J B, HU J Y, LIU C, et al. Mechanically exfoliated MoS2 nanosheets decorated with SnS2 nanoparticles for high-stability gas sensors at room temperature[J]. Rare Metals, Nonferrous Metals Society of China,2021,40(6):1536-1544.
    [36] ZHOU Y, ZOU C, LIN X, et al. UV light activated NO2 gas sensing based on Au nanoparticles decorated few-layer MoS2 thin film at room temperature[J]. Applied Physics Letters,2018,113(8):2-7.
    [37] NAVALE Y H, NAVALE S T, CHOUGULE M A, et al. NO2 gas sensing properties of heterostructural CuO nanoparticles/ZnO nanorods[J]. Journal of Materials Science: Materials in Electronics,2021,32(13):18178-18191. doi: 10.1007/s10854-021-06360-0
    [38] ZHANG L, ZHANG J, HUANG Y, et al. Hexagonal ZnO nanoplates/graphene composites with excellent sensing performance to NO2 at room temperature[J]. Applied Surface Science, 2021, 537: 147785.
    [39] KAUR M, UMAR A, MEHTA S K, et al. Rapid solar-light driven superior photocatalytic degradation of methylene blue using Mo-S2-ZnO heterostructure nanorods photocatalyst[J]. Materials,2018,11(11):2254. doi: 10.3390/ma11112254
    [40] LI Q, ZHANG N, YANG Y, et al. High efficiency photocatalysis for pollutant degradation with MoS2/C3N4 heterostructures[J]. Langmuir,2014,30(29):8965-8972.
    [41] LV T, PAN L, LIU X, et al. Enhanced photocatalytic degradation of methylene blue by ZnO-reduced graphene oxide composite syntheied via microwave-assisted reaction[J]. Journal of Alloys and Compounds,2011,509(41):10086-10091. doi: 10.1016/j.jallcom.2011.08.045
    [42] WANG Y, WANG F, HE J. Controlled fabricaion and photocatalytic properties of a three-dimensional ZnO nanowire/reduced graphene oxide/CdS heterostructure on carbon cloth[J]. Nanoscale,2013,5(22):11291-11297. doi: 10.1039/c3nr03969b
  • 加载中
图(13) / 表(3)
计量
  • 文章访问数:  779
  • HTML全文浏览量:  456
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-12
  • 修回日期:  2022-08-25
  • 录用日期:  2022-08-26
  • 网络出版日期:  2022-09-07
  • 刊出日期:  2023-06-15

目录

    /

    返回文章
    返回