留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高性能水泥基复合材料的压剪性能和破坏准则

谢发祥 韩旭 蔡定鹏 陈徐东

谢发祥, 韩旭, 蔡定鹏, 等. 高性能水泥基复合材料的压剪性能和破坏准则[J]. 复合材料学报, 2022, 39(11): 5311-5320. doi: 10.13801/j.cnki.fhclxb.20220126.002
引用本文: 谢发祥, 韩旭, 蔡定鹏, 等. 高性能水泥基复合材料的压剪性能和破坏准则[J]. 复合材料学报, 2022, 39(11): 5311-5320. doi: 10.13801/j.cnki.fhclxb.20220126.002
XIE Faxiang, HAN Xu, CAI Dingpeng, et al. Compression-shear performance and failure criteria of the high-performance cement-based composite[J]. Acta Materiae Compositae Sinica, 2022, 39(11): 5311-5320. doi: 10.13801/j.cnki.fhclxb.20220126.002
Citation: XIE Faxiang, HAN Xu, CAI Dingpeng, et al. Compression-shear performance and failure criteria of the high-performance cement-based composite[J]. Acta Materiae Compositae Sinica, 2022, 39(11): 5311-5320. doi: 10.13801/j.cnki.fhclxb.20220126.002

高性能水泥基复合材料的压剪性能和破坏准则

doi: 10.13801/j.cnki.fhclxb.20220126.002
详细信息
    通讯作者:

    谢发祥,博士,副教授,硕士生导师,研究方向为桥梁工程 E-mail: xiefaxiang@hhu.edu.cn

  • 中图分类号: TU528.59

Compression-shear performance and failure criteria of the high-performance cement-based composite

  • 摘要: 高性能水泥基复合材料 (High-performance cement based composite,HPCC)是建筑领域的一种前沿性材料,其强度高、韧性强,具有很好的应用前景。高强度钢纤维通常以适当的混合比例加入HPCC中。设计并浇筑了4种不同钢纤维体积分数(0.0vol%、0.5vol%、1.0vol%、2.0vol%)的HPCC,对不同纤维含量的试件的压剪复合性能进行了深入研究。通过试验首先给出了HPCC复合应力作用下基于莫尔-库仑的压剪强度模型。研究结果表明,纤维掺量对HPCC的压剪界面摩擦系数影响较小,其平均值为2.8826,不同纤维掺入量的HPCC的摩擦系数与均值相比的差异在–1.44%~8.51%之间;黏聚力则与钢纤维体积掺量呈二次抛物线关系。而HPCC压剪位移峰值与钢纤维掺入量之间呈现先增加后减小的现象。其次,对HPCC破坏界面进行SEM形貌分析,研究钢纤维影响HPCC基体的微观机制,从SEM形态出发解释了材料压剪强度和位移变化的微观机制。最后,结合试验结果和已有文献研究,提出了基于Ottosen模型的HPCC破坏准则,并给出了具体的拟合参数,表明HPCC八面体剪应力高于普通混凝土材料。试验数据与理论分析结果吻合较好,能够反映HPCC的破坏包络面特征。

     

  • 图  1  试验采用的钢纤维

    Figure  1.  Steel fibers adopted in the experiments

    图  2  加载设备和剪切面示意图

    σ—Compression stress; τ—Shear stress

    Figure  2.  Loading equipment and sketchy shear surface

    图  3  HPCC的压剪试验荷载-位移曲线

    Figure  3.  Compression-shear load versus displacement curves of HPCC specimens

    图  4  HPCC压剪强度与轴向应力关系

    Figure  4.  Relationships of compression-shear strength and axial stress of HPCC

    图  5  HPCC摩擦系数与钢纤维含量关系

    Figure  5.  Friction coefficient versus steel fiber content of HPCC

    图  6  HPCC黏聚力与钢纤维含量关系

    Figure  6.  Cohesive stress versus steel fiber content of HPCC

    图  7  HPCC峰值轴向荷载与剪切位移峰值关系

    Figure  7.  Relationships between axial force and peak shear displacement of HPCC

    图  8  HPCC的微观形貌SEM图像

    Figure  8.  Micro morphology SEM images of HPCC

    图  9  普通混凝土与HPCC的Ottosen破坏准则曲线比较

    τoct—Octohedral shear stress; fc—Axial compressive strength; σoct—Octohedral normal stress; θ—Rode angle

    Figure  9.  Comparison of Ottosen failure criterion curves between ordinary concrete and HPCC

    图  10  HPCC偏平面上的破坏包络线

    Figure  10.  Ultimate strength envelope in the deviatoric plane of HPCC

    表  1  不同高性能水泥基材料(HPCC)配合比

    Table  1.   Various mix proportions of high-performance cement-based composites (HPCC) kg/m3

    SpecimenCementHDC(V)WaterWater reducing agentSandSteel fiber
    C80036018017.0930.0
    0.5%SF/C80036018017.0925.439
    1%SF/C80036018017.0920.778
    2%SF/C80036018017.0911.4156
    Notes: SF—Steel fiber; C—Concrete; HDC(V) is a mineral blending material with a certain fineness and activity with fly ash and ultrafine mineral powder as the main raw materials.
    下载: 导出CSV

    表  2  HPCC试验工况

    Table  2.   Designed experimental cases of HPCC

    ItemLoad profileAxial load/kNNumber of load cases
    ρf-C-compUniaxial compression1
    ρf-SF/C-comp3
    ρf-C-splitSplit tension1
    ρf-SF/C-split3
    ρf-C-X4
    ρf-SF/C-XCombined compression-shear15, 25, 35, 4511
    Notes: ρf=0vol%, 0.5vol%, 1vol%, 2vol%, is the volume fraction of steel fibers; X=15, 25, 35, 45 kN, is the axial pressure in the composite compression-shear tests.
    下载: 导出CSV

    表  3  不同配合比HPCC的单轴抗压和劈裂抗拉强度

    Table  3.   Uniaxial compression and splitting tensile strength of various HPCC

    SpecimenCompressive strength/MPaSplitting tensile strength/MPa
    Test 1Test 2Test 3AverageStandard
    deviation
    Test 1Test 2Test 3AverageStandard
    deviation
    C 113.72 115.73 118.34 115.93 1.89 7.37 7.97 6.82 7.39 0.47
    0.5%SF/C 135.14 121.65 121.56 126.12 6.38 12.29 12.61 13.21 12.70 0.38
    1%SF/C 144.96 147.81 135.68 142.83 5.18 13.63 14.03 13.53 13.73 0.22
    2%SF/C 137.61 120.19 127.58 128.46 7.14 14.44 13.41 14.00 13.95 0.42
    下载: 导出CSV

    表  4  不同配合比HPCC试件压剪复合试验特征值

    Table  4.   Characteristic values of compression-shear composite experiments for HPCC specimens with different mix proportions

    SpecimenPeak load/kN${\tau _{{\text{fc}}}}$/MPa${\varepsilon _1}/{10^{ - 3}}$
    C-1590.179.024.51
    C-25126.1712.624.64
    C-35148.2714.835.93
    C-45169.4016.948.42
    0.5%SF/C-15129.6012.964.36
    0.5%SF/C-25162.3316.235.97
    0.5%SF/C-35174.3017.436.27
    0.5%SF/C-45212.4321.247.48
    1%SF/C-15152.2115.227.52
    1%SF/C-25211.8021.189.85
    1%SF/C-35217.6721.779.83
    1%SF/C-45251.7325.1711.67
    2%SF/C-25199.9319.999.29
    2%SF/C-35237.7723.787.74
    2%SF/C-45252.2725.239.94
    Notes: ${\tau _{{\text{fc}}}}$—Peak shear stress; $ {\varepsilon }_{1} $—Strain of HPCC when the shear stress reaches peak.
    下载: 导出CSV

    表  5  HPCC剪切摩擦系数μ和黏聚力c

    Table  5.   Friction coefficient μ and cohesive stress c of HPCC

    Specimen$\mu $(Error)$c$${R^2}$
    C2.8054(−2.68%)5.12750.9726
    0.5%SF/C2.7558(−4.40%)8.33050.9441
    1%SF/C3.1280(8.51%)11.10740.9694
    2%SF/C2.8411(−1.44%)13.07050.9504
    Average2.8826
    Note: R2—Coefficient of determination.
    下载: 导出CSV

    表  6  Ottosen破坏准则的拟合参数

    Table  6.   Fitting parameters of Ottosen failure criterion

    $A$$B$${k_1}$${k_2}$
    1.324.0112.680.98
    Note: A, B, k1, k2—Fitting parameters in Ottosen criterion.
    下载: 导出CSV
  • [1] 孙伟. 高性能水泥基复合材料的新进展[J]. 港口工程, 1995(1):34-40.

    SUN Wei. Advances in high-performance cement-based composites[J]. Harbor Engineering,1995(1):34-40(in Chinese).
    [2] VOGEL F, SOVJÁK R, JOGL M. Experimental tests of the UHPC in triaxial compression[J]. Applied Mechanics and Materials,2014,486:78-83.
    [3] LARSEN I L, THORSTENSEN R T. The influence of steel fibres on compressive and tensile strength of ultra high performance concrete: A review[J]. Construction and Building Materials,2020,256:119459. doi: 10.1016/j.conbuildmat.2020.119459
    [4] YOO D, BANTHIA N. Mechanical properties of ultra-high-performance fiber-reinforced concrete: A review[J]. Cement & Concrete Composites,2016,73:267-280.
    [5] D'ALESSANDRO K C, ROBERTS-WOLLMANN C L, COUSINS T E. Direct biaxial behavior of ultra-high-performance concrete[J]. ACI Materials Journal, 2020, 117(2): 259-270.
    [6] 张平, 陈旭, 李凯, 等. 超高韧性混凝土配合比设计优化及力学性能研究[J]. 新型建筑材料, 2020, 47(8):69-72. doi: 10.3969/j.issn.1001-702X.2020.08.017

    ZHANG Ping, CHEN Xu, LI Kai, et al. Design optimization and mechanics study of mixture ratio of super high toughness concrete[J]. New Construction Materials,2020,47(8):69-72(in Chinese). doi: 10.3969/j.issn.1001-702X.2020.08.017
    [7] PERUMAL R. Performance and modeling of high-performance steel fiber reinforced concrete under impact loads[J]. Computers and Concrete, 2014, 13(2): 255-270.
    [8] 陈升平, 倪亮, 卢应发, 等. 钢纤维对混凝土轴压性能影响的试验研究[J]. 湖北工业大学学报, 2020, 35(5):97-101.

    CHEN Shengping, NI Liang, LU Yingfa, et al. Experimental research on influence of steel fiber on axial compression performance of concrete[J]. Journal of Hubei University of Technology,2020,35(5):97-101(in Chinese).
    [9] 孟龙, 黄瑞源, 蒋东, 等. 钢纤维的掺入对混凝土材料力学性能的优化[J]. 低温建筑技术, 2019, 41(6):17-21.

    MENG Long, HUANG Ruiyuan, JIANG Dong, et al. Optimi-zation of mechanical properties of concrete materials by incorporation of steel fibers[J]. Low Temperature Building Technology,2019,41(6):17-21(in Chinese).
    [10] ZHOU X, YANG Y, LI X. Acoustic emission characterization of the fracture process in steel fiber reinforced concrete[J]. Computers and Concrete,2016,18(4):923-936.
    [11] QI J, WU Z, MA Z J, et al. Pullout behavior of straight and hooked-end steel fibers in UHPC matrix with various embedded angles[J]. Construction & Building Materials,2018,191:764-774.
    [12] 马恺泽, 刘亮, 刘超, 等. 高强混合钢纤维混凝土的力学性能[J]. 建筑材料学报, 2017, 20(2):261-265. doi: 10.3969/j.issn.1007-9629.2017.02.018

    MA Zekai, LIU Liang, LIU Chao, et al. Mehcanical properties of hybrid steel fiber reinforced high strength concrete[J]. Journal of Building Materials,2017,20(2):261-265(in Chinese). doi: 10.3969/j.issn.1007-9629.2017.02.018
    [13] 海然, 刘盼, 杨艳蒙, 等. 钢纤维增强粉煤灰自密实混凝土力学性能[J]. 建筑材料学报, 2021, 24(1):87-92. doi: 10.3969/j.issn.1007-9629.2021.01.012

    HAI Ran, LIU Pan, YANG Yanmeng, et al. Mechanical pro-perties of steel fiber reinforced fly ash self-compacting concrete[J]. Journal of Building Materials,2021,24(1):87-92(in Chinese). doi: 10.3969/j.issn.1007-9629.2021.01.012
    [14] 周甲佳. 高强高性能混凝土多轴应力状态下力学性能试验和理论研究[D]. 南京: 东南大学, 2015.

    ZHOU Jiajia. Experimental and theoretical study on behavior of high strength and high performance concrete under multi-axial loads[D]. Nanjing: Southeast University, 2015(in Chinese).
    [15] XIE F, CAI D, JI L, et al. Combined compression-shear performance and failure criteria of internally cured concrete with super absorbent polymer[J]. Construction and Building Materials,2021,266:120888. doi: 10.1016/j.conbuildmat.2020.120888
    [16] YU Z, HUANG Q, XIE X, et al. Experimental study and failure criterion analysis of plain concrete under combined compression-shear stress[J]. Construction and Building Materials,2018,179:198-206. doi: 10.1016/j.conbuildmat.2018.05.242
    [17] 邓志恒, 李作华, 杨海峰, 等. 再生混凝土压-剪复合受力性能研究[J]. 建筑结构学报, 2019, 40(5):18-24.

    DENG Zhiheng, LI Zuohua, YANG Haifeng, et al. Mecha-nic behavior of recycled aggregate concrete subjected to compression-shear loading[J]. Journal of Building Structures,2019,40(5):18-24(in Chinese).
    [18] WANG J, XIE F, ZHANG C, et al. Experimental study and failure criterion analysis on combined compression-shear performance of self-compacting concrete[J]. Materials,2020,13(3):713. doi: 10.3390/ma13030713
    [19] 江苏苏博特新材料股份有限公司. SBT-HDC(V) UHPC掺合料: Q/320115 JJK 042—2017[S]. 北京: 江苏苏博特新材料股份有限公司, 2017: 1-4.
    Sobute New Materials CO., LTD.. SBT-HDC(V) mineral admixture for UHPC: Q/320115 JJK 042—2017[S]. Beijing: Sobute New Materials CO.,LTD., 2017: 1-4(in Chinese).
    [20] 中华人民共和国国家质量监督检验检疫总局. 高强高性能混凝土用矿物外加剂: GB/T 18736—2017[S]. 北京: 中国国家标准化管理委员会, 2017.

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Mineral admixtures for high strength and high performance concrete: GB/T 18736—2017[S]. Beijing: Standardization Administration of the People's Republic of China, 2017(in Chinese).
    [21] 中华人民共和国住房和城乡建设部. 普通混凝土力学性能试验方法标准: GB/T 50081—2002[S]. 北京: 中国建筑工业出版社, 2003: 17-20.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Standard for test method of mechanical properties on ordinary concrete: GB/T 50081—2002[S]. Beijing: China Architecture & Building Press, 2003: 17-20(in Chinese).
    [22] 余振鹏, 黄侨, 赵志青, 等. 自密实轻骨料混凝土压剪复合受力性能[J]. 复合材料学报, 2018, 36(8):1984-1994.

    YU Zhenpeng, HUANG Qiao, ZHAO Zhiqing, et al. Mecha-nical property of self-compacting lightweight aggregate concrete under combined compression-shear stress[J]. Acta Materiae Compositae Sinica,2018,36(8):1984-1994(in Chinese).
    [23] 杨勇, 任青文. 钢纤维混凝土力学性能试验研究[J]. 河海大学学报(自然科学版), 2006(1):92-94.

    YANG Yong, REN Qingwen. Experimental study on mecha-nical performance of steel fiber reinforced concrete[J]. Journal of Hohai University (Natural Sciences),2006(1):92-94(in Chinese).
    [24] OTTOSEN N S. A failure criterion for concrete[J]. Journal of Engineering Mechanics,1977,103(4):527-535.
    [25] WANG Y, WANG Y, ZHAO Y, et al. Experimental study on ultra-high performance concrete under triaxial compression[J]. Construction & Building Materials,2020,263:120225.
    [26] 宋玉普, 赵国藩, 彭放, 等. 多轴应力下多种混凝土材料的通用破坏准则[J]. 土木工程学报, 1996(1):25-32.

    SONG Yupu, ZHAO Guofan, PENG Fang, et al. General failure criterion for different concrete materials under multiaxial stresses[J]. China Civil Engineering Journal,1996(1):25-32(in Chinese).
    [27] 余自若, 赵海增, 安明喆, 等. 三轴压下活性粉末混凝土的力学性能研究[J]. 铁道学报, 2017, 39(7):117-122. doi: 10.3969/j.issn.1001-8360.2017.07.017

    YU Ziruo, ZHAO Haizeng, AN Mingzhe, et al. Mechanical properties of reactive powder concrete under triaxial compression[J]. Journal of the China Railway Society,2017,39(7):117-122(in Chinese). doi: 10.3969/j.issn.1001-8360.2017.07.017
    [28] 杨健辉, 汪洪菊, 孟海平, 等. 高强钢纤维碳纳米管混凝土双轴受压试验与破坏准则[J]. 土木工程学报, 2016, 49(11):35-44.

    YANG Jianhui, WANG Hongju, MENG Haiping, et al. Biaxial compression tests and failure criteria for high strength steel fiber and carbon nanotube reinforced concrete[J]. China Civil Enigneering Jounal,2016,49(11):35-44(in Chinese).
    [29] 闫光杰. 200 MPa级活性粉末混凝土(RPC200)的破坏准则与本构关系研究[D]. 北京: 北京交通大学, 2005.

    YAN Guangjie. Research on failure criteria and constitutive model of 200 MPa reactive powder concrete[D]. Beijing: Beijing Transporation University, 2005(in Chinese).
  • 加载中
图(10) / 表(6)
计量
  • 文章访问数:  658
  • HTML全文浏览量:  276
  • PDF下载量:  44
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-22
  • 修回日期:  2022-01-13
  • 录用日期:  2022-01-15
  • 网络出版日期:  2022-01-27
  • 刊出日期:  2022-11-01

目录

    /

    返回文章
    返回