留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于生物炭增强的竹纤维/玉米醇溶蛋白复合膜的拉伸性能

魏俞涌 张庆法 李凯 方勇 郭子豪 杨旭枫 盛奎川

魏俞涌, 张庆法, 李凯, 等. 基于生物炭增强的竹纤维/玉米醇溶蛋白复合膜的拉伸性能[J]. 复合材料学报, 2023, 40(1): 447-454. doi: 10.13801/j.cnki.fhclxb.20211230.003
引用本文: 魏俞涌, 张庆法, 李凯, 等. 基于生物炭增强的竹纤维/玉米醇溶蛋白复合膜的拉伸性能[J]. 复合材料学报, 2023, 40(1): 447-454. doi: 10.13801/j.cnki.fhclxb.20211230.003
WEI Yuyong, ZHANG Qingfa, LI Kai, et al. Tensile properties of bamboo fiber/zein composite films based on biochar enhancement[J]. Acta Materiae Compositae Sinica, 2023, 40(1): 447-454. doi: 10.13801/j.cnki.fhclxb.20211230.003
Citation: WEI Yuyong, ZHANG Qingfa, LI Kai, et al. Tensile properties of bamboo fiber/zein composite films based on biochar enhancement[J]. Acta Materiae Compositae Sinica, 2023, 40(1): 447-454. doi: 10.13801/j.cnki.fhclxb.20211230.003

基于生物炭增强的竹纤维/玉米醇溶蛋白复合膜的拉伸性能

doi: 10.13801/j.cnki.fhclxb.20211230.003
基金项目: 嘉兴市科技计划项目(2019AY11022);中国博士后科学基金(2021M692807);浙江省自然科学基金(LY22C160003);国家自然科学基金(31971794)
详细信息
    通讯作者:

    张庆法,博士后,研究方向为生物质复合材料 E-mail: zhangqingfa@zju.edu.cn

    盛奎川,博士,教授,博士生导师,研究方向为生物质能源与材料 E-mail: kcsheng@zju.edu.cn

  • 中图分类号: TM332

Tensile properties of bamboo fiber/zein composite films based on biochar enhancement

Funds: Jiaxing Science and Technology Project (2019AY11022); China Postdoctoral Science Foundation (2021M692807); Natural Science Foundation of Zhejiang Province (LY22C160003); National Natural Science Foundation of China (31971794)
  • 摘要: 为改善玉米醇溶蛋白(Zein)的拉伸性能,本文以竹粉为原料制备生物炭,以球磨后的生物炭(0.536 μm)、竹纤维(2.157 μm)为增强相,以Zein为连续相,利用溶液浇注法制备复合膜材料,并对复合膜材料的基本特性与拉伸性能进行了研究。结果表明,生物炭与竹纤维加入没有改变Zein的晶面结构,提高了Zein的无序性,降低了Zein的脆性,提高了Zein的韧性。生物炭的加入降低了竹纤维/Zein复合膜的亲水性,降低了竹纤维/Zein复合膜的热稳定性,改善了竹纤维/Zein复合膜的拉伸性能。相比而言,添加0.2 g竹纤维、0.1 g生物炭的Zein复合膜材料的拉伸性能最佳,其拉伸强度、拉伸模量、断裂伸长率分别为0.24 MPa、4.17 MPa、327.27%。本文制备的复合膜材料具有较好的拉伸性能,在包装膜材料领域具有一定的应用潜力。

     

  • 图  1  不同玉米醇溶蛋白复合膜样品的XRD图谱

    Figure  1.  XRD patterns of different zein composite films

    图  2  不同玉米醇溶蛋白复合膜样品的FTIR图谱

    Figure  2.  FTIR spectra of different zein composite films

    图  3  不同玉米醇溶蛋白复合膜样品微观结构的SEM图像

    Figure  3.  SEM images of different zein composite films

    图  4  不同玉米醇溶蛋白复合膜样品的热性能失重曲线(a)、失重速率曲线(b)和热流量曲线(c)

    Figure  4.  Thermal properties of different zein composite films weight loss curves (a), weight loss rate curves (b) and heat flow curves (c)

    T1-T4—Temperature of weight loss rate peaks of different Zein composite films; T5-T6—Temperature of heat flow peaks of different Zein composite films

    图  5  不同玉米醇溶蛋白复合膜样品的拉伸性能

    Figure  5.  Tensile properties of different zein composite films

    表  1  玉米醇溶蛋白复合膜材料的原料配比

    Table  1.   Raw material ratios of zein composite films g

    SampleZeinPEGGlycerolBCBF
    Zein10220.00.0
    2wt%BF/Zein10220.00.2
    1wt%BC-2wt%BF/Zein10220.10.2
    4wt%BF/Zein10220.00.4
    1wt%BC-4wt%BF/Zein10220.10.4
    6wt%BF/Zein10220.00.6
    1wt%BC-6wt%BF/Zein10220.10.6
    8wt%BF/Zein10220.00.8
    1wt%BC-8wt%BF/Zein10220.10.8
    Notes: PEG—Polyethylene glycol; BC—Biochar; BF—Bamboo fiber.
    下载: 导出CSV

    表  2  不同玉米醇溶蛋白复合膜样品第10 s的接触角

    Table  2.   Contact angles of different zein composite films at 10 s

    SampleLeft contact
    angle/(°)
    Right contact
    angle/(°)
    Zein 54.80 55.29
    2wt%BF/Zein 46.71 42.01
    1wt%BC-2wt%BF/Zein 52.49 49.45
    4wt%BF/Zein 57.90 52.50
    1wt%BC-4wt%BF/Zein 54.45 56.37
    6wt%BF/Zein 49.58 53.01
    1wt%BC-6wt%BF/Zein 60.57 57.92
    8wt%BF/Zein 53.76 54.67
    1wt%BC-8wt%BF/Zein 55.06 54.96
    下载: 导出CSV

    表  3  不同玉米醇溶蛋白复合膜样品的热性能参数

    Table  3.   Thermal properties parameters of different zein composite films

    SampleT1/℃T2/℃T3/℃T4/℃T5/℃T6/℃
    Zein 60.85 132.73 250.84 329.16 135.02 544.17
    2wt%BF/Zein 73.98 135.59 250.38 330.49 157.51 553.26
    1wt%BC-2wt%BF/Zein 69.65 150.38 257.28 330.56 155.13 552.49
    4wt%BF/Zein 71.64 147.53 251.91 329.32 169.22 562.11
    1wt%BC-4wt%BF/Zein 68.01 141.79 249.16 331.77 151.07 544.83
    6wt%BF/Zein 70.92 150.07 251.27 329.15 153.41 549.76
    1wt%BC-6wt%BF/Zein 66.77 148.44 248.80 330.14 149.09 546.78
    8wt%BF/Zein 67.79 152.26 256.65 328.94 152.71 555.34
    1wt%BC-8wt%BF/Zein 66.43 148.71 254.92 328.78 150.01 550.15
    下载: 导出CSV
  • [1] ZHANG F, ZHAP Y, WANG D, et al. Current technologies for plastic waste treatment: A review[J]. Journal of Cleaner Production,2021,282:124523. doi: 10.1016/j.jclepro.2020.124523
    [2] JIANG Y, WANG D, LI F, et al. Cinnamon essential oil pickering emulsion stabilized by zein-pectin composite nanoparticles: Characterization, antimicrobial effect and advantages in storage application[J]. International Journal of Biological Macromolecules,2020,148:1280-1289. doi: 10.1016/j.ijbiomac.2019.10.103
    [3] ZHANG L, LIU Z, WANG X, et al. The properties of chitosan/zein blend film and effect of film on quality of mushroom (Agaricus bisporus)[J]. Postharvest Biology and Technology,2019,155:47-56. doi: 10.1016/j.postharvbio.2019.05.013
    [4] ZHANG Y, CUI L, CHE X, et al. Zein-based films and their usage for controlled delivery: Origin, classes and current landscape[J]. Journal of Controlled Release,2015,206:206-219. doi: 10.1016/j.jconrel.2015.03.030
    [5] 张利铭, 刘战丽, 王相友, 等. 壳聚糖/玉米醇溶蛋白膜液的流变与膜热性能[J]. 精细化工, 2019, 36(3):374-379.

    ZHANG Liming, LIU Zhanli, WANG Xiangyou, et al. Rheological properties of chitosan/zein blend solutions and thermal behaviour of blend films[J]. Fine Chemicals,2019,36(3):374-379(in Chinese).
    [6] 孙阳, 张利铭, 刘战丽, 等. 油酸对壳聚糖/玉米醇溶蛋白膜性能的影响[J]. 精细化工, 2019, 36(12):2378-2384.

    SUN Yang, ZHANG Liming, LIU Zhanli, et al. Effect of oleic acid on the properties of chitosan/zein blend film[J]. Fine Chemicals,2019,36(12):2378-2384(in Chinese).
    [7] DA SILVA C E P, DE OLIVEIRA M A S, SIMAS F F, et al. Physical chemical study of zein and arabinogalactans or glucuronomannans polyelectrolyte complexes and their film-forming properties[J]. Food Hydrocolloids,2020,100:105394. doi: 10.1016/j.foodhyd.2019.105394
    [8] DONG W, SU J, CHEN Y, et al. Characterization and antioxidant properties of chitosan film incorporated with modified silica nanoparticles as an active food packaging[J]. Food Chemistry,2021,373:131414.
    [9] 向飞, 李冲, 夏玉婷, 等. 纳米 TiO2对魔芋葡甘聚糖/玉米醇溶蛋白复合膜结构和性能的影响[J]. 食品工业科技, 2021, 42(9):221-227.

    XIANG Fei, LI Chong, XIA Yuting, et al. Effect of nano titanium dioxide on the structure and properties of KGM/zein blend films[J]. Science and Technology of Food Industry,2021,42(9):221-227(in Chinese).
    [10] CHENG C J, JONES O G. Effect of drying temperature and extent of particle dispersion on composite films of methylcellulose and zein nanoparticles[J]. Journal of Food Engineering,2019,250:26-32. doi: 10.1016/j.jfoodeng.2019.01.012
    [11] GILBERT J, CHENG C J, JONES O G. Vapor barrier properties and mechanical behaviors of composite hydroxypropyl methylcelluose/zein nanoparticle films[J]. Food Biophysics,2018,13(1):25-36. doi: 10.1007/s11483-017-9508-1
    [12] 邓云飞, 曾宪智, 周翔, 等. 复合材料褶皱夹芯结构研究进展[J]. 复合材料学报, 2020, 37(12):2966-2983.

    DENG Yunfei, ZENG Xianzhi, ZHOU Xiang, et al. Research progress for the composite sandwich structure with foldcore[J]. Acta Materiae Compositae Sinica,2020,37(12):2966-2983(in Chinese).
    [13] 张庆法, 杨科研, 蔡红珍, 等. 稻壳/高密度聚乙烯复合材料与稻壳炭/高密度聚乙烯复合材料性能对比[J]. 复合材料学报, 2018, 35(11):3044-3050.

    ZHAGN Qingfa, YANG Keyan, CAI Hongzhen, et al. Comparison of properties between rice husk/high density polyethylene and rice husk biochar/high density polyethylene composites[J]. Acta Materiae Compositae Sinica,2018,35(11):3044-3050(in Chinese).
    [14] 王海莹, 余晓, 李穗奕, 等. 热塑性塑料/生物炭复合材料研究进展[J]. 工程塑料应用, 2018, 46(12):139-142. doi: 10.3969/j.issn.1001-3539.2018.12.027

    WANG Haiying, YU Xiao, LI Suiyi, et al. Research progress of thermoplastic/biomass charcoal composites[J]. Engineering Plastics Application,2018,46(12):139-142(in Chinese). doi: 10.3969/j.issn.1001-3539.2018.12.027
    [15] POULOSE A M, ELNOUR A Y, ANIS A, et al. Date palm biochar-polymer composites: An investigation of electrical, mechanical, thermal and rheological characteristics[J]. Science of the Total Environment,2018,619:311-318.
    [16] 张庆法, 徐航, 任夏瑾, 等. 农林废物生物炭/高密度聚乙烯复合材料的制备与性能[J]. 复合材料学报, 2021, 38(2):1-8.

    ZHANG Qingfa, XU Hang, REN Xiajin, et al. Preparation and properties of agroforestry wastes biochar/high density polyethylene composites[J]. Acta Materiae Compositae Sinica,2021,38(2):1-8(in Chinese).
    [17] SUN Y, LIU Z, ZHANG L, et al. Effects of plasticizer type and concentration on rheological, physico-mechanical and structural properties of chitosan/zein film[J]. International Journal of Biological Macromolecules,2020,143:334-340. doi: 10.1016/j.ijbiomac.2019.12.035
    [18] LUECHA J, SOZER N, KOKINI J L. Synthesis and properties of corn zein/montmorillonite nanocomposite films[J]. Journal of Materials Science,2010,45(13):3529-3537. doi: 10.1007/s10853-010-4395-6
    [19] WANG K, WU K, XIAO M, et al. Structural characterization and properties of konjac glucomannan and zein blend films[J]. International Journal of Biological Macromolecules,2017,105:1096-1104. doi: 10.1016/j.ijbiomac.2017.07.127
    [20] QU L, CHEN G, DONG S, et al. Improved mechanical and antimicrobial properties of zein/chitosan films by adding highly dispersed nano-TiO2[J]. Industrial Crops and Products,2019,130:450-458. doi: 10.1016/j.indcrop.2018.12.093
    [21] HONG S S, HAPA R K, KIM J H, et al. Role of zein incorporation on hydrophobic drug-loading capacity and colloidal stability of phospholipid nanoparticles[J]. Colloids and Surfaces B: Biointerfaces,2018,171:514-521. doi: 10.1016/j.colsurfb.2018.07.068
    [22] SCHMITZ F, DE ALBUQUERQUE M B S, ALBERTON M D, et al. Zein films with ZnO and ZnO: Mg quantum dots as functional nanofillers: New nanocomposites for food package with UV-blocker and antimicrobial properties[J]. Polymer Testing,2020,91:106709. doi: 10.1016/j.polymertesting.2020.106709
    [23] 张庆法, 任夏瑾, 吴娟娟, 等. 活性炭/高密度聚乙烯复合材料的力学性能[J]. 复合材料学报, 2020, 37(11):2816-2824.

    ZHANG Qingfa, REN Xiajin, WU Juanjuan, et al. Mechanical properties of activated carbon/high density polyethylene composites[J]. Acta Materiae Compositae Sinica,2020,37(11):2816-2824(in Chinese).
    [24] DAS O, BHATTACHARYYA D, HUI D, et al. Mechanical and flammability characterisations of biochar/polypropylene biocomposites[J]. Composites Part B: Engineering,2016,106:120-128. doi: 10.1016/j.compositesb.2016.09.020
    [25] XIN S, XIAO L, DONG X, et al. Preparation of chitosan/curcumin nanoparticles based Zein and potato starch composite films for Schizothorax prenati fillet preservation[J]. International Journal of Biological Macromolecules,2020,164:211-221. doi: 10.1016/j.ijbiomac.2020.07.082
    [26] YANG M, LI W, HE Y, et al. Modeling the temperature dependent ultimate tensile strength of fiber/polymer composites considering fiber agglomeration[J]. Composites Science and Technology,2021,213:108905. doi: 0.1016/j.compscitech.2021.108905
    [27] CHEN G, DONG S, ZHAO S, et al. Improving functional properties of zein film via compositing with chitosan and cold plasma treatment[J]. Industrial Crops and Products,2019,129:318-326. doi: 10.1016/j.indcrop.2018.11.072
    [28] LI C, ZHANG C, GHOLIZADEH M, et al. Different reaction behaviours of light or heavy density polyethylene during the pyrolysis with biochar as the catalyst[J]. Journal of Hazardous Materials,2020,399:123075. doi: 10.1016/j.jhazmat.2020.123075
    [29] JAAFAR J, SIREGAR J P, PIAH M B M, et al. Influence of selected treatment on tensile properties of short pineapple leaf fiber reinforced tapioca resin biopolymer composites[J]. Journal of Polymers and the Environment,2018,26(11):4271-4281. doi: 10.1007/s10924-018-1296-2
    [30] ZARE Y, RHEE K Y, HUI D. Influences of nanoparticles aggregation/agglomeration on the interfacial/interphase and tensile properties of nanocomposites[J]. Composites Part B: Engineering,2017,122:41-46. doi: 10.1016/j.compositesb.2017.04.008
    [31] 张庆法, 蔡红珍, 周亮, 等. 含炭量对木炭/聚丙烯复合材料性能的影响[J]. 农业工程学报, 2018, 34(23):254-259. doi: 10.11975/j.issn.1002-6819.2018.23.033

    ZHANG Qingfa, CAI Hongzhen, ZHOU Liang, et al. Effect of charcoal content on properties of charcoal/polypropylene composites[J]. Transactions of the Chinese Society of Agricultural Engineering,2018,34(23):254-259(in Chinese). doi: 10.11975/j.issn.1002-6819.2018.23.033
    [32] FEDERICI E, SELLING G W, CAMPANELLA O H, et al. Incorporation of plasticizers and co-proteins in zein electrospun fibers[J]. Journal of Agricultural and Food Chemistry,2020,68(49):14610-14619. doi: 10.1021/acs.jafc.0c03532
    [33] HAMDIA K M, SILANI M, ZHUANG X, et al. Stochastic analysis of the fracture toughness of polymeric nanoparticle composites using polynomial chaos expansions[J]. International Journal of Fracture,2017,206(2):215-227. doi: 10.1007/s10704-017-0210-6
    [34] LI X, LI J, LI J, et al. Effect of sepiolite filler in malamine-urea-formaldehyde resin on the properties of three-ply plywood[J]. Bioresources,2015,10(4):6624-6634.
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  805
  • HTML全文浏览量:  385
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-09
  • 修回日期:  2021-11-24
  • 录用日期:  2021-12-21
  • 网络出版日期:  2021-12-30
  • 刊出日期:  2023-01-15

目录

    /

    返回文章
    返回