留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超声沉淀法制备Ti3C2/BiOI复合材料及其可见光催化性能

陈丹丹 李燕 王爱国 詹璇

陈丹丹, 李燕, 王爱国, 等. 超声沉淀法制备Ti3C2/BiOI复合材料及其可见光催化性能[J]. 复合材料学报, 2022, 39(10): 4685-4693. doi: 10.13801/j.cnki.fhclxb.20211101.003
引用本文: 陈丹丹, 李燕, 王爱国, 等. 超声沉淀法制备Ti3C2/BiOI复合材料及其可见光催化性能[J]. 复合材料学报, 2022, 39(10): 4685-4693. doi: 10.13801/j.cnki.fhclxb.20211101.003
CHEN Dandan, LI Yan, WANG Aiguo, et al. Preparation of Ti3C2/BiOI composite material by precipitation under ultrasonic radiation and its photocatalytic properties under visible light[J]. Acta Materiae Compositae Sinica, 2022, 39(10): 4685-4693. doi: 10.13801/j.cnki.fhclxb.20211101.003
Citation: CHEN Dandan, LI Yan, WANG Aiguo, et al. Preparation of Ti3C2/BiOI composite material by precipitation under ultrasonic radiation and its photocatalytic properties under visible light[J]. Acta Materiae Compositae Sinica, 2022, 39(10): 4685-4693. doi: 10.13801/j.cnki.fhclxb.20211101.003

超声沉淀法制备Ti3C2/BiOI复合材料及其可见光催化性能

doi: 10.13801/j.cnki.fhclxb.20211101.003
基金项目: 安徽省高校自然科学基金重点项目 (KJ2020A0476);安徽省重点研究与开发计划项目(202004b11020033)
详细信息
    通讯作者:

    李燕,博士,教授,硕士生导师,研究方向为无机功能材料 E-mail:lyc171805@163.com

  • 中图分类号: O643.3

Preparation of Ti3C2/BiOI composite material by precipitation under ultrasonic radiation and its photocatalytic properties under visible light

  • 摘要: 为提高BiOI在可见光下的光催化性能,采用氟化氢铵蚀刻碳钛化铝得到氧封端的Ti3C2,以五水合硝酸铋为铋源,碘化钾为碘源,利用超声沉淀法合成Ti3C2/BiOI复合材料。通过XRD、SEM、UV-vis、FTIR、EIS、I-t、PL等手段对材料的组成、形貌、结构、光吸收、电化学阻抗、瞬态光电流响应、光谱响应等方面进行表征和测试。以甲基橙(MO)为目标污染物,模拟可见光照射下研究Ti3C2/BiOI复合材料的光催化性能。结果表明:BiOI成功负载到Ti3C2上,在模拟太阳光照射下,Ti3C2/BiOI复合材料表现出较高的光催化降解能力。其中Ti3C2质量分数为6wt%的Ti3C2/BiOI复合粉的光催化效率最高,在光照0.5 h后降解率达到91.6%,较纯BiOI提高4.5倍。氧封端的Ti3C2作为助催化剂及时转移光生电子,在电荷耗尽层保持了电荷分离,极大提高了光催化性能。

     

  • 图  1  Ti3C2和Ti3AlC2的XRD图谱

    Figure  1.  XRD patterns of Ti3AlC2 and Ti3C2

    图  2  Ti3C2、BiOI及不同质量分数Ti3C2的Ti3C2/BiOI复合材料的XRD图谱

    Figure  2.  XRD patterns of Ti3C2, BiOI and Ti3C2/BiOI composites with different mass fractions of Ti3C2

    图  3  Ti3C2 (a)、BiOI (b) 及6wt%Ti3C2 /BiOI复合材料 (c) 的SEM图像

    Figure  3.  SEM images of Ti3C2 (a), BiOI (b) and 6wt%Ti3C2/BiOI composite (c)

    图  4  超声沉淀法制备Ti3C2/BiOI复合材料机制图

    Figure  4.  Mechanism diagram of preparation of Ti3C2/BiOI composite material by precipitation under ultrasonic radiation

    图  5  Ti3C2、BiOI及不同质量分数Ti3C2的Ti3C2/BiOI复合材料模拟可见光降解甲基橙(MO)曲线

    Figure  5.  Simulated visible light degradation curves of methyl orange (MO) by Ti3C2, BiOI and Ti3C2/BiOI composites with different mass fractions of Ti3C2

    Ct—Pollutant concentration at the moment of t; C0—Original pollutant concentration

    图  6  Ti3C2、BiOI及不同质量分数Ti3C2的Ti3C2/BiOI复合材料的光吸收边

    Figure  6.  Light absorption edge of Ti3C2, BiOI and Ti3C2/BiOI composites with different mass fractions of Ti3C2

    图  7  BiOI和6wt%Ti3C2/BiOI复合材料的能隙图

    Figure  7.  Energy gap of BiOI and 6wt%Ti3C2/BiOI composite

    Eg—Energy gap; α—Absorption coefficient; h—Planck parameter; v—Light frequency

    图  8  Ti3C2、BiOI及6wt%Ti3C2/BiOI复合材料的FTIR图谱

    Figure  8.  FTIR spectra of Ti3C2, BiOI and 6wt%Ti3C2/BiOI composite

    图  9  BiOI和6wt%Ti3C2/BiOI复合材料的电化学阻抗及波特图

    Figure  9.  Electrochemical impedance spectroscopy (EIS) Nyquist and Bode polt of BiOI and 6wt%Ti3C2/BiOI composite

    Rs—Internal resistance of electrolyte solution; Rp—Charge transfer resistance of the working electrode; CPE—Capacitance of a constant phase element

    图  10  BiOI及6wt%Ti3C2/BiOI复合材料的瞬态光电流响应图

    Figure  10.  Transient photocurrent response imagine of BiOI and 6wt%Ti3C2/BiOI composite

    图  11  BiOI与6wt%Ti3C2/BiOI复合材料的光致发光(PL)图谱

    Figure  11.  Photoluminescence (PL) spectrum of BiOI and 6wt%Ti3C2/BiOI composite

    图  12  不同捕获剂对6wt%Ti3C2/BiOI复合材料光催化活性的影响

    Figure  12.  Effect of different capture agents on the photocatalytic activity of 6wt%Ti3C2/BiOI composite

    IPA—Isopropyl alcohol; p-BQ—p-Benzoquinone; EDTA—Ethylene diamine tetraacetic acid

    图  13  Ti3C2/BiOI复合材料光致电荷转移机制图

    Figure  13.  Mechanism of charge transfer processes of the Ti3C2/BiOI composite

    CB—Conduction band; VB—Valence band; Ef—Fermi level

  • [1] TANG G G, ZHANG F X, HUO P W, et al. Constructing novel visible-light-driven ternary photocatalyst of AgBr nanoparticles decorated 2D/2D heterojunction of g-C3N4/BiOBr nanosheets with remarkably enhanced photocatalytic activity for water-treatment[J]. Ceramics International,2019,45(15):19197-19205. doi: 10.1016/j.ceramint.2019.06.167
    [2] LI J, SEE K F, JIN C. Water resources and water pollution emissions in China's industrial sector: A green-biased technological progress analysis[J]. Journal of Cleaner Production,2019,229:1412-1426. doi: 10.1016/j.jclepro.2019.03.216
    [3] MENG A Y, ZHANG L Y, CHENG B, et al. Dual cocatalysts in TiO2 photocatalysis[J]. Advanced Materials,2019,31(30):1807660. doi: 10.1002/adma.201807660
    [4] INTAPHONG P, PHURUANGRAT A, THONGTEM S, et al. Sonochemical synthesis and characterization of BiOI nanoplates for using as visible-light-driven photocatalyst[J]. Materials Letters,2018,213:88-91. doi: 10.1016/j.matlet.2017.11.014
    [5] LU B, ZENG S, LI C, et al. Nanoscale p-n heterojunctions of BiOI/nitrogen doped reduced graphene oxide as a high performance photocatalyst[J]. Carbon,2018,132:191-198. doi: 10.1016/j.carbon.2018.02.038
    [6] SHAN L W, BI J J, LIU Y T. Roles of BiOCl(001) in face-to-faced BiOI(010)/BiOCl(001) heterojunction[J]. Journal of Nanoparticle Research,2018,20(6):1-16. doi: 10.1007/s11051-018-4272-9
    [7] HU C C, HUANG H X, LIN Y F, et al. Decoration of SrTiO3 nanofibers by BiOI for photocatalytic methyl[J]. Journal of the Taiwan Institute of Chemical Engineers,2019,96:264-272. doi: 10.1016/j.jtice.2018.11.020
    [8] ZHANG H L, LI M, ZHU C X, et al. Preparation of magnetic α-Fe2O3/ZnFe2O4@Ti3C2 MXene with excellent photocatalytic performance[J]. Ceramics International,2020,46(1):81-88. doi: 10.1016/j.ceramint.2019.08.236
    [9] TANG R D, XIONG S, GONG D X, et al. Ti3C2 2D MXene: Recent progress and perspectives in photocatalysis[J]. ACS Applied Materials & Interfaces,2020,12(51):56663-56680. doi: 10.1021/acsami.0c12905
    [10] 王晓龙, 王李波, 宋艺赫, 等. Ti3C2Tx/聚酰亚胺复合材料的制备及性能[J]. 复合材料学报, 2020, 36(7):1575-1582.

    WANG Xiaolong, WANG Libo, SONG Yihe, et al. Preparation and performances of Ti3C2Tx/polyimide composites[J]. Acta Materiae Compositae Sinica,2020,36(7):1575-1582(in Chinese).
    [11] LUO Q, CHAI B, XU M Q, et al. Preparation and photocatalytic activity of TiO2-loaded Ti3C2 with small interlayer spacing[J]. Applied Physics A,2018,124(7):495-503. doi: 10.1007/s00339-018-1909-6
    [12] CHEN L, YE X Y, CHEN S, et al. Ti3C2 MXene nanosheet/TiO2 composites for efficient visible light photocatalytic activity[J]. Ceramics International,2020,46(16):25895-25904. doi: 10.1016/j.ceramint.2020.07.074
    [13] HUANG K L, LI C H, LI H Z, et al. Photocatalytic applications of two-dimensional Ti3C2 MXenes: A review[J]. ACS Applied Nano Materials,2020,3(10):9581-9603. doi: 10.1021/acsanm.0c02481
    [14] LI K N, ZHANG S S, LI Y H, et al. MXenes as noble-metal-alternative cocatalysts in photocatalysis[J]. Chinese Journal of Catalysis,2021,42(1):3-14. doi: 10.1016/S1872-2067(20)63630-0
    [15] RAN M, LI J, CUI W, et al. Efficient and stable photocatalytic NO removal on C self-doped g-C3N4: Electronic structure and reaction mechanism[J]. Catalysis Science & Technology,2018,8(13):3387-3394. doi: 10.1039/C8CY00887F
    [16] DENG H, LI Z J, WAN L, et al. Nanolayered Ti3C2 and SrTiO3 composites for photocatalytic reduction and removal of Uranium(VI)[J]. ACS Applied Energy Materials,2019,2(4):2283-2294. doi: 10.1021/acsanm.9b00205
    [17] 胡金娟, 马春雨, 王佳琳, 等. Ag-Ag2O/TiO2-g-C3N4纳米复合材料的制备及可见光催化性能[J]. 复合材料学报, 2020, 37(6):1401-1410.

    HU Jinjuan, MA Chunli, WANG Jialin, et al. Preparation and photocatalytic properties of Ag-Ag2O/TiO2-g-C3N4 nanocomposites[J]. Acta Materiae Compositae Sinica,2020,37(6):1401-1410(in Chinese).
    [18] ZHANG J F, FU J W, WANG Z L, et al. Direct Z-scheme porous g-C3N4/BiOI heterojunction for enhanced visible light photocatalytic activity[J]. Journal of Alloys and Compounds,2018,766:841-850. doi: 10.1016/j.jallcom.2018.07.041
    [19] WANG H M, ZHAO R, HU X H, et al. 0D/2D Heterojunctions of Ti3C2 MXene QDs/SiC as an efficient and robust photocatalyst for boosting the visible photocatalytic NO pollutant removal ability[J]. ACS Applied Materials & Interfaces,2020,12(36):40176-40185. doi: 10.1021/acsami.0c01013
    [20] YANG Y, ZENG Z, ZHANG C, et al. Construction of iodine vacancy rich BiOI/Ag@AgI Z-scheme heterojunction photocatalysts for visible-light-driven tetra-cycline degradation: Transformation pathways and mechanism insight[J]. Chemical Engineering Journal,2018,349:808-821. doi: 10.1016/j.cej.2018.05.093
    [21] 李小燕, 何登武, 李冠超, 等. Bi2O3-Bi2WO6 直接Z-scheme异质结的制备、表征及光催化还原U(VI)的性能[J]. 复合材料学报, 2021, 38(8):2646-2654.

    LI Xiaoyan, HE Dengwu, LI Guanchao, et al. Preparation and characterization of Bi2O3-Bi2WO6 direct Z-scheme heterojunction and photocatalytic reduction of U(VI) under visible light irradiation[J]. Acta Materiae Compositae Sinica,2021,38(8):2646-2654(in Chinese).
    [22] WANGKAWONG K, PHANICHPHANT S, TANTRAVIWAT D, et al. Photocatalytic efficiency improvement of Z-scheme CeO2/BiOI heterostructure for RhB degradation and benzylamine oxidation under visible light irradiation[J]. Journal of the Taiwan Institute of Chemical Engineers,2020,108:55-63. doi: 10.1016/j.jtice.2020.01.003
    [23] KUNDU J, SATPATHY B K, PRADHAN D. Composition controlled CdS/ZnS heterostructure nanocomposites for efficient visible light photocatalytic hydrogen generation[J]. Industrial & Engineering Chemistry Research,2019,58(51):22709-22717. doi: 10.1021/acs.iecr.9b03764
    [24] ZHANG J H, XING C, SHI F. MoS2/Ti3C2 heterostructure for efficient visible light photocatalytic hydrogen generation[J]. International Journal of Hydrogen Energy,2020,45(11):6291-6301. doi: 10.1016/j.ijhydene.2019.12.109
    [25] XIE X Q, ZHANG N, TANG Z R, et al. Ti3C2Tx MXene as a Janus cocatalyst for concurrent promoted photoactivity and inhibited photocorrosion[J]. Applied Catalysis B: Environmental,2018,237:43-49. doi: 10.1016/j.apcatb.2018.05.070
    [26] PENG C, YANG X F , LI Y H, et al. Hybrids of two-dimensional Ti3C2 and TiO2 exposing {001} facets toward enhanced photocatalytic activity[J]. ACS Applied Materials & Interfaces,2016,8(9):6051-6060. doi: 10.1021/acsami.5b11973
    [27] 刘成宝, 唐飞, 朱晨, 等. WO3-Ag/石墨相C3N4 Z型复合光催化剂的合成及其光催化性能[J]. 复合材料学报, 2021, 38(1):209-220.

    LIU Chengbao, TANG Fei, ZHU Chen, et al. Preparation and photocatalytic properties of WO3-Ag/graphitic C3N4 Z-scheme composite photocatalyst[J]. Acta Materiae Compositae Sinica,2021,38(1):209-220(in Chinese).
    [28] LIN P Y, SHEN J, YU X H, et al. Construction of Ti3C2 MXene/O-doped g-C3N4 2D-2D Schottky-junction for enhanced photocatalytic hydrogen evolution[J]. Ceramics International,2019,45(18):24656-24663. doi: 10.1016/j.ceramint.2019.08.203
  • 加载中
图(13)
计量
  • 文章访问数:  1073
  • HTML全文浏览量:  430
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-26
  • 修回日期:  2021-10-17
  • 录用日期:  2021-10-23
  • 网络出版日期:  2021-11-03
  • 刊出日期:  2022-08-22

目录

    /

    返回文章
    返回