留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

g-C3N4/POPs异质结制备及其可见光催化性能

郭佳允 傅炀杰 张柯杰 姬云 杨娟 王齐

郭佳允, 傅炀杰, 张柯杰, 等. g-C3N4/POPs异质结制备及其可见光催化性能[J]. 复合材料学报, 2022, 40(0): 1-7
引用本文: 郭佳允, 傅炀杰, 张柯杰, 等. g-C3N4/POPs异质结制备及其可见光催化性能[J]. 复合材料学报, 2022, 40(0): 1-7
Jiayun GUO, Yangjie FU, Kejie ZHANG, Yun JI, Juan YANG, Qi WANG. Preparation and visible light catalytic performance of g-C3N4/POPs heterojunction[J]. Acta Materiae Compositae Sinica.
Citation: Jiayun GUO, Yangjie FU, Kejie ZHANG, Yun JI, Juan YANG, Qi WANG. Preparation and visible light catalytic performance of g-C3N4/POPs heterojunction[J]. Acta Materiae Compositae Sinica.

g-C3N4/POPs异质结制备及其可见光催化性能

基金项目: 国家自然科学基金(21876154、52074103),浙江师范大学“先进催化材料”教育部重点实验室和浙江省“固体表面反应化学”重点实验室开放课题 (KLMEACM202104)
详细信息
    通讯作者:

    王齐,教授,博士生导师,研究方向为环境光催化  E-mail:wangqi8327@zjgsu.edu.cn

  • 中图分类号: O643.36

Preparation and visible light catalytic performance of g-C3N4/POPs heterojunction

  • 摘要: 光催化技术是一种极具应用前景的环境修复技术,开发高效稳定、具有可见光响应的光催化剂是其研究的重点之一。本研究采用常压溶剂热法,以1,3,5-三(4-氨基苯基)苯(TAPB)和2,5-二甲氧基苯-1,4二甲醛(DMTP)为单体合成的共轭多孔有机聚合物TAPB-DMTP POP为基底,原位负载不同比例的g-C3N4,制备g-C3N4/POPs复合光催化剂。通过XRD、FT-IR、BET、TGA、UV-vis DRS、i-t和EIS等测试方法表征了g-C3N4/POPs的化学结构与光学特性。在可见光条件下,选择Cr(VI)为模型污染物探究了不同g-C3N4负载量的g-C3N4/POPs光催化还原效率,并对pH值、催化剂用量和底物浓度等影响因素进一步探究。结果表明,在pH=2条件下,g-C3N4/POP-2表现出了最佳的光催化还原性能,可见光光照下,30 min还原效率达到99.1%,Cr(VI)还原效率相对g-C3N4和TAPB-DMTP POP显著提高,其拟合一级动力学速率常速分别为纯g-C3N4和TAPB-DMTP POP的22.0倍和2.2倍。同时该材料五次循环后对Cr(VI)还原率仍然达到90%以上,具有优良的光催化稳定性。

     

  • 图  1  石墨相氮化碳(g-C3N4)、g-C3N4/POP和多孔有机聚合物1,3,5-三(4-氨基苯基)苯-2,5-二甲氧基苯-1,4二甲醛(TAPB-DMTP POP)的XRD图谱

    Figure  1.  XRD patterns of graphitic carbon nitride (g-C3N4), g-C3N4/POP and porous organic polymer 1,3,5-tris(4-aminophenyl)benzene-2,5-dimethoxybenzene-1,4-diformaldehyde (TAPB-DMTP) POP

    图  2  g-C3N4、反应前后的g-C3N4/POP、TAPB-DMTP POP、TAPB和DMTP的红外图谱

    Figure  2.  FT-IR spectra of g-C3N4, g-C3N4/POP before and after the reaction, TAPB-DMTP POP, TAPB and DMTP

    图  3  g-C3N4、反应前后的g-C3N4/POP和TAPB-DMTP POP的N2吸附-脱附曲线

    Figure  3.  N2 adsorption-desorption of g-C3N4, g-C3N4/POP before and after the reaction and TAPB-DMTP POP

    图  4  g-C3N4、g-C3N4/POP和TAPB-DMTP POP的热重曲线

    Figure  4.  TGA curves of g-C3N4, g-C3N4/POP and TAPB-DMTP POP

    图  5  g-C3N4、g-C3N4/POP和TAPB-DMTP POP的紫外-可见漫反射光谱,插图:带隙图

    Figure  5.  UV-Vis DRS of g-C3N4, g-C3N4/POP and TAPB-DMTP POP, insert: band gap

    图  6  不同条件下光催化还原Cr(VI)动力学曲线,插图:速率常数k

    Figure  6.  Kinetic curves of photocatalytic reduction of Cr(VI) under different conditions, insert: rate constant k

    图  7  pH、Cr(VI)浓度和催化剂浓度对光催化去除率的影响

    Figure  7.  The influence of pH, Cr(VI) concentration and catalyst concentration on photocatalytic removal rate

    图  8  g-C3N4/POP-2还原Cr(VI)的循环使用性能

    Figure  8.  Reusability of g-C3N4/POP-2 for the photocatalytic reduction of Cr(VI)

    图  9  g-C3N4、g-C3N4/POP和TAPB-DMTP POP的瞬态光电流曲线(a)和阻抗谱(b)(实线通过ZView软件拟合获得,插图:等效电路)

    Figure  9.  Transient photocurrent curves (a) and EIS Nyquist plots (b) (the solid line was fitted by ZView software, inset: equivalent circuit) of g-C3N4, g-C3N4/POP and TAPB-DMTP POP

    图  10  (a) g-C3N4、g-C3N4/POP和TAPB-DMTP POP的Mott-Schottky曲线;(b) g-C3N4/POP光催化还原Cr(VI)机制图

    Figure  10.  (a) Mott-Schottky plots of g-C3N4, g-C3N4/POP and TAPB-DMTP POP; (b) proposed mechanism of photocatalytic Cr(VI) reduction by g-C3N4/POP

  • [1] ZHANG G, LAN Z A, WANG X. Conjugated polymers: Catalysts for photocatalytic hydrogen evolution[J]. Angewandte Chemie International Edition,2016,55(51):15712-15727. doi: 10.1002/anie.201607375
    [2] ONG W, TAN L, NG Y, et al. Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: Are we a step closer to achieving sustainability[J]. Chemical Reviews,2016,116(12):7159-329. doi: 10.1021/acs.chemrev.6b00075
    [3] 王晓爽, 李育珍, 易思远, 等. Bi2MoS2O4改性g-C3N4光催化降解罗丹明B[J]. 复合材料学报, 2021, 39(0):1-7.

    WANG Xiaoshuang, LI Yuzhen, YI Si-yuan, et al. Bi2MoS2O4 modified g-C3N4 photocatalytic degradation of Rhodamine B[J]. Acta Materiae Compositae Sinica,2021,39(0):1-7(in Chinese).
    [4] WANG Q, YANG G, FU Y, et al. Nanospace engineering of metal-organic frameworks for heterogeneous catalysis[J]. ChemNanoMat,2022,8(1):e202100396.
    [5] ZHANG W, AGUILA B, MA S. Retracted article: Potential applications of functional porous organic polymer materials[J]. Journal of Materials Chemistry A,2017,5(19):8795-8824. doi: 10.1039/C6TA11168H
    [6] 赵宏伟, 陈广, 彭琪, 等. 氟掺杂多孔聚合物制备及其吸附性能[J]. 复合材料学报, 2022, 40(0):1-13.

    ZHAO Hongwei, CHEN Guang, PENG Qi, et al. Preparation and adsorption properties of fluorine-doped porous polymers[J]. Acta Materiae Compositae Sinica,2022,40(0):1-13(in Chinese).
    [7] QIAN X, WANG B, ZHU Z Q, et al. Novel n-rich porous organic polymers with extremely high uptake for capture and reversible storage of volatile iodine[J]. Journal of Hazardous Materials,2017,338:224-232. doi: 10.1016/j.jhazmat.2017.05.041
    [8] ZHANG T, XING G, CHEN W, et al. Porous organic polymers: A promising platform for efficient photocatalysis[J]. Materials Chemistry Frontiers,2020,4(2):332-353. doi: 10.1039/C9QM00633H
    [9] BYUN J, ZHANG K A I. Designing conjugated porous polymers for visible light-driven photocatalytic chemical transformations[J]. Materials Horizons,2020,7(1):15-31. doi: 10.1039/C9MH01071H
    [10] SONG C, SHAO Y, YUE Z, et al. Sheathed in-situ room-temperature growth covalent organic framework solid-phase microextraction fiber for detecting ultratrace polybrominated diphenyl ethers from environmental samples[J]. Analytica Chimica Acta,2021,1176:338772. doi: 10.1016/j.aca.2021.338772
    [11] WANG T, LIANG H, ANITO D, et al. Emerging applications of porous organic polymers in visible-light photocatalysis[J]. Journal of Materials Chemistry A,2020,8(15):7003-7034. doi: 10.1039/D0TA00364F
    [12] ZHAO C, CHEN Z, SHI R, et al. Recent advances in conjugated polymers for visible-light-driven water splitting[J]. Advanced Materials,2020,32(28):e1907296. doi: 10.1002/adma.201907296
    [13] XIAO J, LIU X, PAN L, et al. Heterogeneous photocatalytic organic transformation reactions using conjugated polymers-based materials[J]. Acs Catalysis,2020,10(20):12256-12283. doi: 10.1021/acscatal.0c03480
    [14] YAO Y, ZHANG R, LIU T, et al. Controlled synthesis of core-shell composites with uniform shells of a covalent organic framework[J]. Inorganic Chemistry Communications,2019,101:160-163. doi: 10.1016/j.inoche.2019.01.040
    [15] IAMAEL M, WU Y, TAFFA D H, et al. Graphitic carbon nitride synthesized by simple pyrolysis: Role of precursor in photocatalytic hydrogen production[J]. New Journal of Chemistry,2019,43(18):6909-6920. doi: 10.1039/C9NJ00859D
    [16] 傅炀杰, 张可欣, 毛惠秀, 等. AgI/NH2-UiO-66(Zr)异质结制备及其可见光催化性能[J]. 复合材料学报, 2021, 39(0):1-7.

    FU Yangjie, ZHANG Kexin, MAO Huixiu, et al. Preparation and photocatalytic performance of AgI/NH2-UiO-66(Zr) heterojunction[J]. Acta Materiae Compositae Sinica,2021,39(0):1-7(in Chinese).
    [17] ZHANG K, FU Y, HAO D, et al. Fabrication of CN75/NH2-MIL-53(Fe) p-n heterojunction with wide spectral response for efficiently photocatalytic Cr(VI) reduction[J]. Journal of Alloys and Compounds,2022,891:161994. doi: 10.1016/j.jallcom.2021.161994
    [18] FU Y, ZHANG K, ZHANG Y, et al. Fabrication of visible-light-active MR/NH2-MIL-125(Ti) homojunction with boosted photocatalytic performance[J]. Chemical Engineering Journal,2021,412:128722. doi: 10.1016/j.cej.2021.128722
    [19] SMITH B. J, OVERHOLTS A. C, HWANG N, et al. Insight into the crystallization of amorphous imine-linked polymer networks to 2D covalent organic frameworks[J]. Chemical Communications,2016,52(18):3690-3. doi: 10.1039/C5CC10221A
    [20] XIN B, REN Z, HU H, et al. Photocatalytic activity and interfacial carrier transfer of Ag-TiO2 nanoparticle films[J]. Applied Surface Science,2005,252(5):2050-2055. doi: 10.1016/j.apsusc.2005.03.172
    [21] GAO Q, LIN D, FAN Y, et al. Visible light induced photocatalytic reduction of Cr(VI) by self-assembled and amorphous Fe-2MI[J]. Chemical Engineering Journal,2019,374:10-19. doi: 10.1016/j.cej.2019.05.151
    [22] HE Q, FU Y, GE X, et al. Facile fabrication of Fe-BDC/Fe-2MI heterojunction with boosted photocatalytic activity for Cr(VI) reduction[J]. Journal of Environmental Chemical Engineering,2021,9(5):105961. doi: 10.1016/j.jece.2021.105961
  • 加载中
计量
  • 文章访问数:  118
  • HTML全文浏览量:  83
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-10
  • 录用日期:  2022-03-19
  • 修回日期:  2022-03-10
  • 网络出版日期:  2022-04-07

目录

    /

    返回文章
    返回