留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

张弦式预应力CFRP板加固钢-混凝土组合梁的抗弯试验

强旭红 陈龙龙 姜旭

强旭红, 陈龙龙, 姜旭. 张弦式预应力CFRP板加固钢-混凝土组合梁的抗弯试验[J]. 复合材料学报, 2022, 39(11): 5135-5147. doi: 10.13801/j.cnki.fhclxb.20220629.004
引用本文: 强旭红, 陈龙龙, 姜旭. 张弦式预应力CFRP板加固钢-混凝土组合梁的抗弯试验[J]. 复合材料学报, 2022, 39(11): 5135-5147. doi: 10.13801/j.cnki.fhclxb.20220629.004
QIANG Xuhong, CHEN Longlong, JIANG Xu. Flexure tests on steel-concrete composite beams strengthened with prestressed CFRP plates by string system[J]. Acta Materiae Compositae Sinica, 2022, 39(11): 5135-5147. doi: 10.13801/j.cnki.fhclxb.20220629.004
Citation: QIANG Xuhong, CHEN Longlong, JIANG Xu. Flexure tests on steel-concrete composite beams strengthened with prestressed CFRP plates by string system[J]. Acta Materiae Compositae Sinica, 2022, 39(11): 5135-5147. doi: 10.13801/j.cnki.fhclxb.20220629.004

张弦式预应力CFRP板加固钢-混凝土组合梁的抗弯试验

doi: 10.13801/j.cnki.fhclxb.20220629.004
基金项目: 国家重点研发计划重点专项(2020YFD1100403);国家自然科学基金(52142804;51408150);广东省重点领域研发计划(2019B111106002);中建股份科技研发计划(CSCEC-2020-Z-1);上海市科技计划项目(20DZ2253000); 多因素耦合作用下朔黄重载铁路桥梁结构安全监测与状态评估研究(SHGF-18-50)
详细信息
    通讯作者:

    姜旭,博士,副教授,博士生导师,研究方向为钢与组合桥 E-mail: jiangxu@tongji.edu.cn

  • 中图分类号: TU997

Flexure tests on steel-concrete composite beams strengthened with prestressed CFRP plates by string system

Funds: National Key Research and Development Program (2020 YFD1100403); National Natural Science Foundation of China (52142804; 51408150); Research and Development Program for Key Areas in Guangdong Province (2019 B111106002); China Construction Corporation Science and Technology Research and Development Program Funding (CSCEC-2020-Z-1); Shanghai Science and Technology Plan Project (20 DZ2253000); Study on Structural Safety Monitoring and Condition Assessment of Shuohuang Heavy Haul Railway Bridge under Multi-factor Coupling(SHGF-18-50)
  • 摘要: 为研究张弦式预应力碳纤维增强树脂复合材料(CFRP)板加固方法的加固效果,进行了4根5.2 m长的钢-混凝土组合梁试件的四点弯曲试验。使用自主研发的顶升装置横向张拉CFRP板,配合可转动的端部锚具共同完成加固。试验结果表明:钢-混凝土组合梁均呈现出典型的弯曲破坏特征;加固梁的极限承载能力显著提高,分别提高31.5%、28.8%和47.9%,其中150CFRP(10)-S-C组由于锚具不当而导致CFRP板提前发生破坏;加固对梁的破坏时挠度影响很小,100CFRP(10)-S-C和150CFRP(15)-S-C梁的极限挠度仅降低了0.4%和1.6%;增大CFRP板截面面积对梁的抗弯刚度贡献较大,而提高初始预应力水平更有助于延缓钢梁屈服;加载全过程,CFRP板应力沿全长分布均匀,破坏时材料强度利用率达80%以上。为期约90 h的预应损失监测表明,张弦式加固方法的预应力损失不超过2.5%,且损失预应力补偿方便。但是,值得注意的是该方法对端部锚具的可靠性要求很高。

     

  • 图  1  钢-混凝土组合梁尺寸与配筋示意图

    $\phi $—Diameter

    Figure  1.  Schematic of steel-concrete composite beam size and reinforcement layout

    图  2  张弦式加固装置

    Figure  2.  String reinforcement system devices

    图  3  张弦式预应力CFRP板加固组合梁

    Figure  3.  Composite beam strengthened with prestressed CFRP plates by string system

    图  4  加载装置示意图

    Figure  4.  Schematic of load set-up

    图  5  钢-混凝土组合梁抗弯试验破坏现象

    Figure  5.  Failure phenomenon of steel-concrete composite beams

    图  6  钢-混凝土组合梁跨中截面荷载-挠度曲线

    Δ—Deflection of mid-span

    Figure  6.  Load-deflection curves at mid-span section of steel-concrete composite beams

    图  7  混凝土板荷载-应变曲线

    Figure  7.  Load-strain curves of concrete slab

    图  8  混凝土板内纵筋的荷载-应变曲线

    Figure  8.  Load-strain curves of reinforcement bars in concrete slab

    图  9  钢梁荷载-应变曲线

    Figure  9.  Load-strain curves of steel beam

    图  10  CFRP板荷载-应变曲线

    M, L, R—Middle section, left section and right sectionof CFRP plate, respectively

    Figure  10.  Load-strain curves of CFRP plate

    图  11  钢-混凝土组合梁跨中沿截面高度应变分布曲线

    h—Height; P—Load

    Figure  11.  Strain distribution along section height in mid-span section of steel-concrete composite beams

    图  12  加载过程钢-混凝土组合梁跨中截面中性轴位置变化曲线

    Figure  12.  Variation of the neutral axis in mid-span section of steel-concrete composite beams during loading

    图  13  CFRP板应力-时间曲线

    Figure  13.  Stress-time curves of CFRP plate

    表  1  混凝土力学性能

    Table  1.   Mechanical properties of concrete

    GradeCube compressive strength/MPaPrism compressive strength/MPaElastic modulus/GPa
    C5054.749.130.2
    下载: 导出CSV

    表  2  钢筋力学性能

    Table  2.   Mechanical properties of steel reinforcement

    GradeDiameter/mmElastic modulus/GPaNominal yield strength/MPaTensile strength/MPa
    HRB3356200.3541.8645.3
    8199.6488.8603.1
    下载: 导出CSV

    表  3  碳纤维增强复合材料(CFRP)板材料力学性能

    Table  3.   Mechanical properties of carbon fiber-reinforced polymer (CFRP) plate

    GradeTensile strength/MPaElastic modulus/GPaElongation ratio/%Interlaminar shear strength/MPa
    I25211951.751
    下载: 导出CSV

    表  4  钢-混凝土组合梁抗弯试验参数

    Table  4.   Reinforcement parameters of steel-concrete composite beams

    SampleSection size of CFRP plateInitial prestress level/%Specimens
    Thickness/mmWidth/mmArea/mm2
    U-S-C Reference beam
    100CFRP(10)-S-C 2 50 100 10 Strengthened beam
    150CFRP(10)-S-C 3 50 150 10
    150CFRP(15)-S-C 3 50 150 15
    Notes: U-S-C is un-strengthened steel-concrete composite beam as reference beam; The other three beams are strengthened by prestressed CFRP plates. Taking 100CFRP(10)-S-C as an example, this specimen is strengthened by CFRP plate with 100 mm2 of cross-sectional area and 10% of initial prestress level.
    下载: 导出CSV

    表  5  钢-混凝土组合梁试验结果

    Table  5.   Test results of steel-concrete composite beams

    SamplePy/kNPu/kNPΔ=85 mm/kNΔi/mmΔy/mmΔu/mmΔu/Δy
    U-S-C1963403291.0719.69114.645.82
    100CFRP(10)-S-C2244474270.1722.56114.165.06
    150CFRP(10)-S-C2434384370.0122.0786.743.93
    150CFRP(15)-S-C274503462−1.7923.72112.794.76
    Notes: Py—Yielding load when the bottom flange of steel beam yields; Pu—Ultimate load when the composite beam failure; PΔ=85 mm—Load when the deflection of mid-span is 85 mm; Δi—Initial mid-span deflection after strengthening with prestressed CFRP plate; Δy, Δu—Mid-span deflections corresponding to Py and Pu, respectively; Δu/Δy—Ductility factor.
    下载: 导出CSV

    表  6  CFRP板预应力损失统计

    Table  6.   Prestress loss of CFRP plate

    Initial
    prestress level
    PositionPrestress
    loss/MPa
    Prestress
    loss ratio/%
    Average
    value/%
    10% L 6.9 2.67 2.28
    M 5.5 2.11
    R 5.5 2.06
    15% L 6.9 1.75 2.13
    M 11.2 2.91
    R 6.7 1.73
    下载: 导出CSV
  • [1] 聂建国. 钢-混凝土组合结构桥梁[M]. 北京: 人民交通出版社, 2011.

    NIE Jianguo. Steel-concrete composite bridge[M]. Beijing: China Communications Press, 2011(in Chinese).
    [2] 张鹏, 桂金洋, 邓宇, 等. 偏心受拉作用下预应力CFRP筋-型钢混凝土构件抗裂试验[J]. 复合材料学报, 2021, 38(3):920-931. doi: 10.13801/j.cnki.fhclxb.20200710.001

    ZHANG Peng, GUI Jinyang, DENG Yu, et al. Experiment on crack resistance of prestressed CFRP tendons-steel reinforced concrete members under eccentric tension[J]. Acta Materiae Compositae Sinica,2021,38(3):920-931(in Chinese). doi: 10.13801/j.cnki.fhclxb.20200710.001
    [3] GHEITASI A, HARRIS D K. Performance assessment of steel-concrete composite bridges with subsurface deck deterioration[J]. Structures,2015,2:8-20. doi: 10.1016/j.istruc.2014.12.001
    [4] CHEN J, ZHANG H, YU Q. Monotonic and fatigue behavior of steel-concrete composite beams subjected to corrosion[J]. Structures,2021,34:1973-1984. doi: 10.1016/j.istruc.2021.08.110
    [5] LEBET J P, DUCRET J M. Le comportement dans le temps des ponts mixtes continus[R]. Lausanne: Office Fédéral Des Routes, 1997.
    [6] 黄侨. 既有钢-混组合梁桥常见病害分析及其加固策略[C]//王永珩. 2008年全国既有桥梁加固: 改造与评价学术会议论文集. 北京: 人民交通出版社, 2008: 159-164.
    HUANG Qiao. Common diseases analysis and reinforcement strategy of existing steel-concrete composite beam bridge[C]//WANG Yongheng. The 2008 National Acade-mic Conference on Bridge Strengthening: Papers of Reconstruction and Evaluation. Beijing: China Communications Press, 2008: 159-164(in Chinese).
    [7] 于志平. 钢-混凝土组合梁桥加固方法及加固质量检验评定方法研究[D]. 西安: 长安大学, 2013.

    YU Zhiping. Inspection and assessment methods research on the reinforcement measures and quality of steel-concrete composite girder bridge[D]. Xi’an: Chang’an University, 2013(in Chinese).
    [8] 万世成, 黄侨, 关健. 预应力CFRP板加固钢-混凝土组合梁受弯性能试验[J]. 哈尔滨工业大学学报, 2019, 51(3):80-87. doi: 10.11918/j.issn.0367-6234.201801164

    WAN Shicheng, HUANG Qiao, GUAN Jian. Test on flexural behavior of steel-concrete composite beams strengthened with prestressed carbon fiber-reinforced polymer plates[J]. Journal of Harbin Institute of Technology,2019,51(3):80-87(in Chinese). doi: 10.11918/j.issn.0367-6234.201801164
    [9] 许清风, 朱雷, 陈建飞, 等. 内嵌CFRP筋/片加固木梁受弯性能试验研究[J]. 建筑结构学报, 2012, 33(8):149-156. doi: 10.14006/j.jzjgxb.2012.08.018

    XU Qingfeng, ZHU Lei, CHEN Jianfei, et al. Experimental study on flexural behavior of strengthening timber beams with near surface mounted CFRP bars and strips[J]. Jour-nal of Building Structures,2012,33(8):149-156(in Chinese). doi: 10.14006/j.jzjgxb.2012.08.018
    [10] 程璐, 冯鹏, 徐善华, 等. CFRP加固钢结构抗疲劳技术研究综述[J]. 玻璃钢/复合材料, 2013(4):58-62. doi: 10.3969/j.issn.1003-0999.2013.04.013

    CHENG Lu, FENG Peng, XU Shanhua, et al. The technology and research of steel structure strengthened with CFRP[J]. Fiber Reinforced Plastics/Compossites,2013(4):58-62(in Chinese). doi: 10.3969/j.issn.1003-0999.2013.04.013
    [11] 陈卓异, 彭岚, 李传习, 等. CFRP全覆盖胶粘加固含中心裂纹钢板的静力性能[J]. 复合材料学报, 2022, 39(5):1810-1820.

    CHEN Zhuoyi, PENG Lan, LI Chuanxi, et al. Static behavior of CFRP full cover adjusted steel plate with center crack[J]. Acta Materiae Compositae Sinica,2022,39(5):1810-1820(in Chinese).
    [12] 中华人民共和国住房和城乡建设部. 结构加固修复用碳纤维片材: JG/T 167—2016[S]. 北京: 中国标准出版社, 2016.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Carbon fiber laminate for strengthening and restoring structures: JG/T 167—2016[S]. Beijing: Standards Press of China, 2016(in Chinese).
    [13] NABIL F G. Response of continuous CFRP prestressed concrete bridges under static and repeated loadings[J]. PCI Journal,2000,45(6):84-102. doi: 10.15554/pcij.11012000.84.102
    [14] 黄滔. CFRP板预应力锚具试验研究[D]. 重庆: 重庆大学, 2009.

    HUANG Tao. Experimental study on CFRP plate prestressed anchor[D]. Chongqing: Chongqing University, 2009(in Chinese).
    [15] 钟建. 预应力CFRP板加固混凝土梁的强度利用效率分析[C]//同济大学/《建筑结构》杂志社. 建筑科学与工程: 第二届大型建筑钢与组合结构国际会议论文集. 北京: 《建筑结构》编辑部, 2014: 578-581.

    ZHONG Jian. Analysis of the utilization efficiency of the strength of concrete beams strengthened with prestressed CFRP plates[C]//Tongji University/Building Structure. Building Science and Engineering: Papers of the Second International Conference on Steel and Composite Structures for Large Buildings. Beijing: Building Structure’s Editorial Department, 2014: 578-581(in Chinese).
    [16] 叶华文, 李新舜, 帅淳, 等. 无粘结预应力CFRP板加固受损钢梁疲劳试验研究[J]. 西南交通大学学报, 2019, 54(1):129-136. doi: 10.3969/j.issn.0258-2724.20180297

    YE Huawen, LI Xinshun, SHUAI Chun, et al. Fatigue experimental analysis of damaged steel beams strengthened with prestressed unbonded CFRP plates[J]. Journal of Southwest Jiaotong University,2019,54(1):129-136(in Chinese). doi: 10.3969/j.issn.0258-2724.20180297
    [17] NORDIN H, TALJSTEN B. Concrete beams strengthened with prestressed near surface mounted CFRP[J]. Journal of Composites for Construction,2006,10(1):60-68. doi: 10.1061/(ASCE)1090-0268(2006)10:1(60
    [18] 薛伟辰, 曾磊, 谭园. 预应力CFRP板加固混凝土梁设计理论研究[J]. 建筑结构学报, 2008, 29(4):127-133. doi: 10.3321/j.issn:1000-6869.2008.04.017

    XUE Weichen, ZENG Lie, TAN Yuan. Studies on design theories of concrete beams strengthened with prestressed CFRP plates[J]. Journal of Building Structures,2008,29(4):127-133(in Chinese). doi: 10.3321/j.issn:1000-6869.2008.04.017
    [19] 陈思贵. 预应力CFRP板加固RC梁抗弯性能及尺寸效应试验研究[D]. 广州: 广东工业大学, 2017.

    CHEN Sigui. Experimental study on flexural performance and size effect of RC beam strengthened with prestressed CFRP plate[D]. Guangzhou: Guangdong University of Technology, 2017(in Chinese).
    [20] 韩志强. 预应力碳纤维板加固受损混凝土梁的试验研究[D]. 重庆: 重庆交通大学, 2015.

    HAN Zhiqiang, The prestressed carbon fiber board experimental study of damaged reinforced concrete beam[D]. Chongqing: Chongqing Jiaotong University, 2015(in Chinese).
    [21] 周知献. 预应力碳纤维板加固损伤混凝土梁的抗弯承载能力研究[D]. 重庆: 重庆交通大学, 2018.

    ZHOU Zhixian. Study on the bending capacity of damaged concrete beam reinforced by prestressed carbon fiber plate[D]. Chongqing: Chongqing Jiaotong University, 2018(in Chinese).
    [22] DENG J, RASHID K, LI X, et al. Comparative study on prestress loss and flexural performance of rectangular and T beam strengthened by prestressing CFRP plate[J]. Composite Structures,2021, 262:113340. doi: 10.1016/j.compstruct.2020.113340
    [23] DENG J, LI X, WANG Y, et al. RC beams strengthened by prestressed CFRP plate subjected to sustained loading and continuous wetting condition: Flexural behavior[J]. Construction and Building Materials,2021,311:125290.
    [24] LI X, DENG J, WANG Y, et al. RC beams strengthened by prestressed CFRP plate subjected to sustained loading and continuous wetting condition: Time-dependent prestress loss[J]. Construction and Building Materials,2021,275:122187. doi: 10.1016/j.conbuildmat.2020.122187
    [25] 陶利. 预应力CFRP板加固钢梁抗弯性能的试验研究[D]. 柳州: 广西工学院, 2010.

    TAO Li. Research on flexural performance of steel beams reinforced by prestressed carbon fabric reinforced plate[D]. Liuzhou: Guangxi University of Science and Technology, 2010(in Chinese).
    [26] 邓朗妮, 张鹏, 燕柳斌, 等. 预应力碳纤维板加固钢梁抗弯性能试验研究[J]. 工程力学, 2011, 28(10): 78-85.

    DENG Langni, ZHANG Peng, YAN Liubin, et al. Flexural performance experimental study on steel beam strengtheened with prestressed CFRP plate[J]. Engineering Mechanics, 2011, 28(10): 78-85(in Chinese).
    [27] 朱捷. 预应力CFRP板加固钢梁抗弯受力性能研究[D]. 绵阳: 西南科技大学, 2019.

    ZHU Jie. Research on the flexural behavior of steel beams strengthened with prestressed CFRP plate[D]. Mianyang: Southwest University of Science and Technology, 2019(in Chinese).
    [28] LI J, WANG Y, DENG J, et al. Experimental study on the flexural behaviour of notched steel beams strengthened by prestressed CFRP plate with an end plate anchorage system[J]. Engineering Structures,2018,171(9):29-39. doi: 10.1016/j.engstruct.2018.05.042
    [29] LI J, ZHU M, DENG J, et al. Flexural behaviour of notched steel beams strengthened with a prestressed CFRP plate subjected to fatigue damage and wetting/drying cycles[J]. Engineering Structures, 2022, 250: 113430
    [30] 万世成, 黄侨, 关健, 等. 预应力碳纤维板加固钢-混凝土组合连续梁负弯矩区试验[J]. 吉林大学学报: 工学版, 2019(4):1114-1123. doi: 10.13229/j.cnki.jdxbgxb20180432

    WAN Shicheng, HUANG Qiao, GUAN Jian, et al. Strengthening of continuous steel-concrete composite beams in negative moment region using prestressed carbon fiber-reinforced polymer plates[J]. Journal of Jilin University (Engineering and Technology Edition),2019(4):1114-1123(in Chinese). doi: 10.13229/j.cnki.jdxbgxb20180432
    [31] GHAFOORI E, MOTAVALLI M. Innovative CFRP-prestressing system for strengthening metallic structures[J]. Jour-nal of Composites for Construction,2015,19(6):04015006. doi: 10.1016/j.engstruct.2019.109416
    [32] KIANMOFRAD F, GHAFOORI E, ELYASI M, et al. Strengthening of metallic beams with different types of prestressed unbonded retrofit systems[J]. Composite Structures,2017,159:81-95. doi: 10.1016/j.compstruct.2016.09.020
    [33] GHAFOORI E, MOTAVALLI M, NUSSBAUMER A, et al. Design criterion for fatigue strengthening of riveted beams in a 120-year-old railway metallic bridge using pre-stressed CFRP plates[J]. Composites Part B: Engineering,2015,68:1-13. doi: 10.1016/j.compositesb.2014.08.026
  • 加载中
图(13) / 表(6)
计量
  • 文章访问数:  668
  • HTML全文浏览量:  408
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-21
  • 修回日期:  2022-05-29
  • 录用日期:  2022-06-11
  • 网络出版日期:  2022-06-30
  • 刊出日期:  2022-11-01

目录

    /

    返回文章
    返回