留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

耐磨防覆冰聚四氟乙烯表面设计与加工

何志豪 张柄桢 潘维浩 孙晶 宋金龙

何志豪, 张柄桢, 潘维浩, 等. 耐磨防覆冰聚四氟乙烯表面设计与加工[J]. 复合材料学报, 2024, 41(10): 5161-5171. doi: 10.13801/j.cnki.fhclxb.20240029.001
引用本文: 何志豪, 张柄桢, 潘维浩, 等. 耐磨防覆冰聚四氟乙烯表面设计与加工[J]. 复合材料学报, 2024, 41(10): 5161-5171. doi: 10.13801/j.cnki.fhclxb.20240029.001
HE Zhihao, ZHANG Bingzhen, PAN Weihao, et al. Design and processing of wear-resistant and ice-resistant PTFE surface[J]. Acta Materiae Compositae Sinica, 2024, 41(10): 5161-5171. doi: 10.13801/j.cnki.fhclxb.20240029.001
Citation: HE Zhihao, ZHANG Bingzhen, PAN Weihao, et al. Design and processing of wear-resistant and ice-resistant PTFE surface[J]. Acta Materiae Compositae Sinica, 2024, 41(10): 5161-5171. doi: 10.13801/j.cnki.fhclxb.20240029.001

耐磨防覆冰聚四氟乙烯表面设计与加工

doi: 10.13801/j.cnki.fhclxb.20240029.001
基金项目: 国家自然科学基金(52175380);辽宁省自然科学基金优秀青年基金计划项目(2023JH3/10200013);航空科学基金(2023Z045063001);“兴辽英才计划”青年拔尖人才项目(XLYC2203115);基本科研业务费医工交叉联合基金项目(DUT23YG118)
详细信息
    通讯作者:

    孙晶,博士,教授,硕士生导师,研究方向为仿生功能表面的制备与应用 E-mail: sunjing@dlut.edu.cn

    宋金龙,博士,研究员,博士生导师,研究方向为功能表面特种加工技术 E-mail: songjinlong@dlut.edu.cn

  • 中图分类号: TB34;TB332

Design and processing of wear-resistant and ice-resistant PTFE surface

Funds: National Natural Science Foundation of China (52175380); Outstanding Youth Natural Science Foundation of Liaoning Province (2023JH3/10200013); Aviation Science Fund (2023Z045063001); Liaoning Revitalization Talents Program (XLYC2203115); Fundamental Research Funds for the Central Universities (DUT23YG118)
  • 摘要: 冰射流清洗设备料仓表面的覆冰常造成设备停机维修,但如何降低料仓表面的覆冰粘附力是目前研究的难点。本文采用CO2激光刻蚀聚四氟乙烯(PTFE)获得超疏水表面,并设计了一种菱形支撑肋阵列结构提高超疏水PTFE表面的耐磨性。CO2激光刻蚀能在PTFE表面形成多层次交错堆叠纤维结构,且激光刻蚀后的表面化学成分无明显变化。在50 μm激光扫描线间距、300 mm/s扫描速度和9 W激光功率下,可获得164°接触角、4°滚动角的超疏水PTFE表面。设计的30°顶角角度、3 mm菱形边长和0.05 mm肋边宽度的菱形支撑肋阵列结构可有效提高超疏水PTFE表面的耐磨性。即使被砂纸摩擦6 m后,具有菱形支撑肋阵列结构的超疏水PTFE表面仍能保持良好的超疏水性,且覆冰粘附力仅为普通PTFE表面的50%。本耐磨防覆冰PTFE表面有望应用于冰射流清洗设备。

     

  • 图  1  CO2激光刻蚀聚四氟乙烯(PTFE)获得超疏水表面:(a) CO2激光刻蚀PTFE表面示意图;(b) CO2激光刻蚀区域和未刻蚀区域的宏观形貌;(c) CO2激光未刻蚀区域的微观形貌;(d) CO2激光刻蚀区域的微观形貌(激光加工参数:9 W激光功率、300 mm/s扫描速度、50 μm扫描线间距)

    Figure  1.  CO2 laser processing polytetrafluoroethylene (PTFE) to obtain superhydrophobic surface: (a) Schematic diagram of CO2 laser processing PTFE surface; (b) Macroscopic morphology of CO2 laser processed area and unprocessed area; (c) Microscopic morphology of CO2 laser processed area; (d) Microscopic morphology of CO2 laser processed area (Laser processing parameters: Laser power of 9 W, scanning speed of 300 mm/s, scanning line spacing of 50 μm)

    CA—Contact angle

    图  2  扫描线间距对PTFE表面润湿性的影响:((a), (b))不同激光功率P下,PTFE的接触角(CA)和滚动角(RA)随扫描线间距的变化(扫描速度为300 mm/s);((c), (d))不同扫描速度v下,PTFE的CA和RA随扫描线间距的变化(激光功率为9 W)

    Figure  2.  Influence of scanning line spacing on the wettability of the PTFE surface: ((a), (b)) Variation of CA and rolling angle (RA) of the PTFE surface with the scanning line spacing at different laser powers P (Scanning speed of 300 mm/s); ((c), (d)) Variation of CA and RA of the PTFE surface with the scanning line spacing at different scanning speeds v (Laser power of 9 W)

    图  3  在不同扫描线间距下PTFE刻蚀后的SEM图像:((a), (b)) 80 μm;((c), (d)) 110 μm (激光功率为9 W,扫描速度为300 mm/s)

    Figure  3.  SEM images of the PTFE processed with different scanning line spacing: ((a), (b)) 80 μm; ((c), (d)) 110 μm (Laser power of 9 W, scanning speed of 300 mm/s)

    图  4  激光功率对PTFE润湿性的影响:不同扫描速度下接触角(a)和滚动角(b)随激光功率的变化(扫描线间距为50 μm)

    Figure  4.  Influence of the laser power on the wettability of the PTFE: Variation of the CA (a) and RA (b) of the PTFE with the laser power at different scanning speed (Scanning line spacing of 50 μm)

    图  5  在不同激光功率下PTFE刻蚀后的SEM图像:((a), (b)) 6.0 W;((c), (d)) 7.2 W (扫描速度为300 mm/s,扫描线间距为50 μm)

    Figure  5.  SEM images of the PTFE processed with different laser powers:((a), (b)) 6.0 W; ((c), (d)) 7.2 W (Scanning speed of 300 mm/s, scanning line spacing of 50 μm)

    图  6  在不同扫描速度下PTFE加工后的SEM图像:((a), (b)) 200 mm/s;((c), (d)) 400 mm/s

    Figure  6.  SEM images of the PTFE processed with different scanning speeds: ((a), (b)) 200 mm/s; ((c), (d))400 mm/s

    图  7  激光刻蚀前后PTFE的化学成分:(a) EDS图谱;(b) XRD图谱

    Figure  7.  Chemical compositions of the PTFE before and after laser etching: (a) EDS spectra; (b) XRD patterns

    图  8  超疏水PTFE砂纸摩擦试验:(a) PTFE在砂纸(粒度为12 μm)上摩擦的照片;(b)接触角和滚动角随摩擦距离的变化;(c)砂纸摩擦6 m后的PTFE的SEM图像

    Figure  8.  Sandpaper rubbing test of the superhydrophobic PTFE: (a) Photo of the PTFE rubbed by the sandpaper (12 μm grit); (b) Variation of the CA and RA with the rubbing distance; (c) SEM image of the PTFE rubbed by the sandpaper for 6 m

    图  9  菱形支撑肋阵列结构的示意图

    Figure  9.  Diagram of rhombus support rib array structure

    d—Rib width; α—Crest angle; l—Length of side

    图  10  滚动角随顶角角度的变化

    Figure  10.  Variation of the RA with the crest angle

    图  11  滚动角随菱边边长的变化

    Figure  11.  Variation of the RA with the length of side

    图  12  菱形支撑肋阵列结构的PTFE表面的SEM图像

    Figure  12.  SEM images of the PTFE surface with the rhombus support rib array structure

    图  13  不同体积V水滴的滚动角随摩擦距离的变化:无菱形支撑肋阵列结构(a)和有菱形支撑肋阵列结构(b)的超疏水PTFE表面

    Figure  13.  Variation of RA of water droplet with different volume V on the PTFE with the rubbing distance: Superhydrophobic PTFE without (a) and with (b) the rhombus support rib array

    图  14  砂纸摩擦6 m后的有菱形支撑肋阵列结构的PTFE的SEM图像

    Figure  14.  SEM images of the PTFE with the rhombus support rib array structure after being rubbed by sandpaper for 6 m

    图  15  落砂试验:(a)落砂试验示意图;(b)接触角随落砂质量的变化

    Figure  15.  Sand impact test: (a) Schematic diagram of sand impact test; (b) Variation of the CA with the quality of quartz sand

    图  16  覆冰粘附力测试:(a)除冰过程照片;(b)除冰力随时间的变化;(c)测试后PTFE表面SEM图像

    Figure  16.  Ice adhesion force test: (a) Photo of deicing process; (b) Variation of the force with the time; (c) SEM image of the PTFE after ice adhesion force test

    图  17  冻融循环测试:接触角和滚动角随冻融循环次数的变化

    Figure  17.  Freezing/melting cycle test: Variation of the CA and RA with times of freezing/melting cycles

    图  18  延迟结冰测试:(a)普通PTFE;(b)菱形支撑肋阵列结构PTFE

    Figure  18.  Delayed icing test: (a) PTFE; (b) PTFE with the rhombus support rib array

    表  1  不同激光加工参数

    Table  1.   Different laser processing parameters

    No. Laser power/W Scanning speed/(mm·s−1) Scanning line spacing/μm
    1 5.4, 6.0, 6.6, 7.2, 7.8, 8.4, 9.0, 9.6 200, 300, 400 50
    2 6.0, 7.8, 9.0 300 40, 50, 60, 70, 80, 90, 100, 110
    3 9.0 200, 300, 400 40, 50, 60, 70, 80, 90, 100, 110
    下载: 导出CSV

    表  2  菱形支撑肋阵列结构的参数

    Table  2.   Structure parameters of the rhombus support rib array structure

    Length of side/mm Crest angle/(°) Rib width/mm
    1, 2, 3 30, 60, 90 0.05, 0.1
    下载: 导出CSV

    表  3  不同流量水流冲击3 min后CA变化

    Table  3.   Variation of the CA of the coating after 3 min scouring with different water flow rates

    Flow rate/(L·min−1) Original CA CA after 3 min scouring
    0.18 159° 157°
    0.36 161° 160°
    0.54 158° 155°
    下载: 导出CSV
  • [1] MCGEOUGH J A. Cutting of food products by ice-particles in a water-jet[J]. Procedia CIRP, 2016, 42: 863-865. doi: 10.1016/j.procir.2016.03.009
    [2] DEO A, BAGAL D K, PATTANAIK A K, et al. Recent advancements in ice jet machining process as an alternative of AWJM[J]. Materials Today: Proceedings, 2022, 50: 981-985. doi: 10.1016/j.matpr.2021.07.157
    [3] SHISHKIN D V, GESKIN E S, GOLDENBERG B. Application of ice particles for precision cleaning of sensitive surfaces[J]. Journal of Electronic Packaging, 2002, 124(4): 355-361. doi: 10.1115/1.1511735
    [4] COURTS E J. Means and methods for cleaning and polishing automobiles: US Patent, 2699403[P]. 1955-01-11.
    [5] JERMAN M, ZELEŇÁK M, LEBAR A, et al. Observation of cryogenically cooled ice particles inside the high-speed water jet[J]. Journal of Materials Processing Technology, 2021, 289: 116947. doi: 10.1016/j.jmatprotec.2020.116947
    [6] KOHLI R. Developments in surface contamination and cleaning: Applications of cleaning techniques[M]. Amsterdam: Elsevier, 2019: 729-764.
    [7] CHU D, SINGH S C, YONG J, et al. Superamphiphobic surfaces with controllable adhesion fabricated by femtosecond laser bessel beam on PTFE[J]. Advanced Materials Interfaces, 2019, 6(14): 1900550.
    [8] FANG Y, YONG J, CHEN F, et al. Durability of the tunable adhesive superhydrophobic PTFE surfaces for harsh environment applications[J]. Applied Physics A, 2016, 122(9): 827. doi: 10.1007/s00339-016-0325-z
    [9] 闫德峰, 刘子艾, 潘维浩, 等. 多功能超疏水表面的制造和应用研究现状[J]. 表面技术, 2021, 50(5): 1-19.

    YAN Defeng, LIU Zi'ai, PAN Weihao, et al. Research status on the fabrication and application of multi-functional superhydrophobic surfaces[J]. Surface Technology, 2021, 50(5): 1-19(in Chinese).
    [10] 李君, 矫维成, 王寅春, 等. 超疏水材料在防/除冰技术中的应用研究进展[J]. 复合材料学报, 2022, 39(1): 23-38.

    LI Jun, JIAO Weicheng, WANG Yinchun, et al. Research progress on application of superhydrophobic materials in anti-icing and de-icing technology[J]. Acta Materiae Compositae Sinica, 2022, 39(1): 23-38(in Chinese).
    [11] 占彦龙, 李文, 李宏, 等. 激光微加工技术制备浸润性可控聚四氟乙烯超疏水表面[J]. 高分子材料科学与工程, 2018, 34(4): 147-151,158.

    ZHAN Yanlong, LI Wen, LI Hong, et al. Fabrication of polytetrafluoroethylene superhydrophobic surface with controllable wettability by laser micromaching technology[J]. Polymer Materials Science and Engineering, 2018, 34(4): 147-151,158(in Chinese).
    [12] LIANG F, LEHR J, DANIELCZAK L, et al. Robust non-wetting PTFE surfaces by femtosecond laser machining[J]. International Journal of Molecular Sciences, 2014, 15: 13681-13696. doi: 10.3390/ijms150813681
    [13] ŽEMAITIS A, MIKŠYS J, GAIDYS M, et al. High-efficiency laser fabrication of drag reducing riblet surfaces on pre-heated Teflon[J]. Materials Research Express, 2019, 6: 065309. doi: 10.1088/2053-1591/ab0b12
    [14] WAUGH D G, LAWRENCE J, SHUKLA P. Modulating the wettability characteristics and bioactivity of polymeric materials using laser surface treatment[J]. Journal of Laser Applications, 2016, 28: 022502. doi: 10.2351/1.4944441
    [15] SONG J, GAO M, ZHAO C, et al. Large-area fabrication of droplet pancake bouncing surface and control of bouncing state[J]. ACS Nano, 2017, 11(9): 9259-9267. doi: 10.1021/acsnano.7b04494
    [16] FALAH TOOSI S, MORADI S, KAMAL S, et al. Superhydrophobic laser ablated PTFE substrates[J]. Applied Surface Science, 2015, 349: 715-723. doi: 10.1016/j.apsusc.2015.05.026
    [17] YONG J, FANG Y, CHEN F, et al. Femtosecond laser ablated durable superhydrophobic PTFE films with micro-through-holes for oil/water separation: Separating oil from water and corrosive solutions[J]. Applied Surface Science, 2016, 389: 1148-1155. doi: 10.1016/j.apsusc.2016.07.075
    [18] RIVEIRO A, MAÇON A L B, DEL VAL J, et al. Laser surface texturing of polymers for biomedical applications[J]. Frontiers in Physics, 2018, 6: 00016.
    [19] YANG X, LI Y, ZHENG H, et al. Saturated surface charging on micro/nanoporous polytetrafluoroethylene for droplet manipulation[J]. ACS Applied Nano Materials, 2022, 5(3): 3342-3351. doi: 10.1021/acsanm.1c03869
    [20] GOLOVIN K B, GOSE J W, PERLIN M, et al. Bioinspired surfaces for turbulent drag reduction[J]. Philosophical Transactions: Mathematical, Physical and Engineering Sciences, 2016, 374(2073): 1-20.
    [21] GRAKOVICH P N, IVANOV L F, KALININ L A, et al. Laser ablation of polytetrafluoroethylene[J]. Russian Journal of General Chemistry, 2009, 79(3): 626-634.
    [22] ZHANG Z, ZHANG T, ZHANG X, et al. Fabrication of a thin-layer PTFE coating exhibiting superhydrophobicity by supercritical CO2[J]. Progress in Organic Coatings, 2017, 111: 322-326. doi: 10.1016/j.porgcoat.2017.06.019
    [23] OL'KHOV Y A, ALLAYAROV S R, TOLSTOPYATOV E M, et al. The effect of continuous CO2 laser radiation on the thermal and molecular—Topological properties of polytetrafluoroethylene[J]. High Energy Chemistry, 2010, 44(1): 63-74. doi: 10.1134/S0018143910010108
    [24] TOLSTOPYATOVA E M, GRAKOVICH P N, IVANOV L F, et al. Thermophysical and spectral features of laser ablation of polymers[J]. High Energy Chemistry, 2015, 49(6): 433-437. doi: 10.1134/S001814391505015X
    [25] TOLSTOPYATOV E M. Ablation of polytetrafluoroethylene using a continuous CO2 laser beam[J]. Journal of Physics D: Applied Physics, 2005, 38(12): 1993-1999. doi: 10.1088/0022-3727/38/12/021
    [26] CASSIE A B D, BAXTER S . Wettability of porous surfaces[J]. Transactions of the Faraday Society, 1944, 50: 546-551.
    [27] 金浩正, 矫维成, 李君, 等. 低冰粘附防/除冰涂层的技术现状及研究趋势[J]. 复合材料学报, 2024, 41(5): 2181-2200.

    JIN Haozheng, JIAO Weicheng, LI Jun, et al. Technology status and research trend of low-ice-adhesion anti-icing and de-icing coatings[J]. Acta Materiae Compositae Sinica, 2024, 41(5): 2181-2200(in Chinese).
    [28] 徐达, 肖振, 余新泉, 等. 多功能疏水/超疏水复合涂层的制备及其防覆冰性[J]. 复合材料学报, 2022, 39(3): 1102-1109.

    XU Da, XIAO Zhen, YU Xinquan, et al. Preparation and anti-icing characteristics of multifunctional hydrophobic/superhydrophobic composite coating[J]. Acta Materiae Compositae Sinica, 2022, 39(3): 1102-1109(in Chinese).
  • 加载中
图(18) / 表(3)
计量
  • 文章访问数:  192
  • HTML全文浏览量:  89
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-08
  • 修回日期:  2024-01-19
  • 录用日期:  2024-01-22
  • 网络出版日期:  2024-01-30
  • 刊出日期:  2024-10-15

目录

    /

    返回文章
    返回