留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于生物质衍生炭在超级电容器中的研究进展

宋晓琪 雷西萍 樊凯 田甜 朱航

宋晓琪, 雷西萍, 樊凯, 等. 基于生物质衍生炭在超级电容器中的研究进展[J]. 复合材料学报, 2023, 40(3): 1328-1339. doi: 10.13801/j.cnki.fhclxb.20220628.002
引用本文: 宋晓琪, 雷西萍, 樊凯, 等. 基于生物质衍生炭在超级电容器中的研究进展[J]. 复合材料学报, 2023, 40(3): 1328-1339. doi: 10.13801/j.cnki.fhclxb.20220628.002
SONG Xiaoqi, LEI Xiping, FAN Kai, et al. Research progress of biomass derived carbon in supercapacitors[J]. Acta Materiae Compositae Sinica, 2023, 40(3): 1328-1339. doi: 10.13801/j.cnki.fhclxb.20220628.002
Citation: SONG Xiaoqi, LEI Xiping, FAN Kai, et al. Research progress of biomass derived carbon in supercapacitors[J]. Acta Materiae Compositae Sinica, 2023, 40(3): 1328-1339. doi: 10.13801/j.cnki.fhclxb.20220628.002

基于生物质衍生炭在超级电容器中的研究进展

doi: 10.13801/j.cnki.fhclxb.20220628.002
基金项目: 超级电容器电极材料设计与应用团队建设资助Supercapacitor Electrode Material Design and Application Team Construction Support
详细信息
    通讯作者:

    雷西萍,博士,教授,博士生导师,研究方向为超级电容器 E-mail: leixiping123456@163.com

  • 中图分类号: TM53

Research progress of biomass derived carbon in supercapacitors

  • 摘要: 多孔炭由于其较大的比表面积、高耐久性和独特的内部结构而被广泛应用于储能领域的电极材料,但是发展新的储能系统需要可再生、低成本和对环境友好的电极材料。而生物质作为地球上最广泛的可再生资源之一,有着巨大的开发利用价值。目前在储能领域,生物质炭基超级电容器因其优异的性能而备受研究者的青睐。本文按照炭前驱体的来源对生物质衍生炭进行了分类,重点介绍了生物质衍生炭作为超级电容器电极材料方面的最新研究成果,最后讨论了生物质衍生炭材料在建设高效能源存储系统方面所面临的挑战。

     

  • 图  1  生物质衍生炭前驱体的分类

    Figure  1.  Classification of biomass derived carbon precursors

    图  2  (a) 花生壳基活性炭的合成路线示意图[16];(b) 采用可再生秸秆、三聚氰胺和盐模板一锅裂解法制备多孔炭材料[17];(c) 蚀刻多孔炭骨架(E-PCS)@WC的合成[18];(d) NiCo@炭黑(BC)的电化学性能分析[19]

    Figure  2.  (a) Schematic diagram of the synthesis route of peanut shell-based activated carbons[16]; (b) Carbonaceous materials with high supercapacitor performance were prepared by one-pot copyrolysis of renewable wheat straw, melamine and salt templating[17]; (c) Synthesis of etched porous carbon skeleton (E-PCS)@WC[18]; (d) Electrochemical performance analysis of NiCo@carbon black (BC)[19]

    NPCM—Nitrogen-doped porous carbon materials

    图  3  (a) 咖啡渣炭材料(CGCM)@石墨烯纳米片(GNS)&碳纳米管(CNT)的合成示意图[33];(b) 分层多孔炭(HPC)-K-X-Mg(X为Mg(CH3COO)2·4H2O的量,分别为0.3 g和0.6 g)系列样品的制备流程图[34];(c) 甘蔗渣基炭球/还原氧化石墨烯(rGO)复合材料的制备及作为超级电容器电极的应用[38];(d) 腐植酸钾(HA-K)-650-Q-M(650为加热至650℃,Q为转移至水中,M为200℃煅烧2 h)多孔炭的形成及电化学储存机制[39]

    Figure  3.  (a) Schematic illustration of the synthesis for coffee grounds carbon material (CGCM)@graphene nanosheets (GNS)&carbon nanotube (CNT)[33]; (b) Preparation flow chart of layered porous carbon (HPC)-K-X-Mg (X is the amount of Mg(CH3COO)2·4H2O, 0.3 g and 0.6 g, respectively) series samples[34]; (c) Illustration for the preparation of bagasse-based carbon spheres/reduced graphene oxide (rGO) composite and application as supercapacitor electrodes[38]; (d) Formation and electrochemical storage mechanism of potassium humate (HA-K)-650-Q-M (650 is heated to 650℃, Q is transferred to water, M is calcined at 200℃ for 2 h) porous carbon[39]

    图  4  (a) 大蒜皮基多孔炭(GBPC)合成的微观过程[46];(b) 龟壳衍生活性炭(TSHC-5)的制备工艺示意图[48];(c) Ni(OH)2/rGO@人发(Hh)纤维的制备过程及非对称超级电容器的制备示意图[49];(d) 从鸡蛋中获得全固体、柔性超级电容器的示意图[50]

    Figure  4.  (a) Microscopic process of Garlic peel base porous carbon (GBPC) synthesis[46]; (b) Schematic diagram of the preparation process of tortoise shell derived activated carbon (TSHC-5)[48]; (c) Schematic illustration of the preparation procedure of the Ni(OH)2/rGO@human hair (Hh) fiber and the fabrication of the asymmetric supercapacitor[49]; (d) Schematic illustration of deriving all-solid, flexible supercapacitors from eggs[50]

    TS—Turtle shells; TS-750—TS was held in a tube furnace at 750℃ for 2 h with a heating rate of 5℃·min−1, N2 as the protective gas; TSH-750—TS-750 was pickled with an excess of 1 mol/L HCl to remove the hydroxyapatite and washed with deionized water to neutralize it

    表  1  部分生物质衍生炭结构特征及电化学性能情况

    Table  1.   The structural characteristics and electrochemical performance of some biomass derived carbon

    Biomass
    precursor
    SSA/
    (m2·g−1)
    Pore
    volume/(cm3·g−1)
    Micropore
    volume/(cm3·g−1)
    Electrode
    configuration
    Electrochemical
    performance
    Ref.
    Rice husk454.60.2310.1662 electrodesCs: 130.3 F/g at 0.5 A/g
    Rate capability: 83.7%,
    from 0.5 A/g to 2.5 A/g
    Cycling stability: 89.4%, 10000 cycles
    [60]
    Celery16401.020.123 electrodesCs: 402 F/g at 1 A/g
    Cycling stability: 97%, 10000 cycles
    Energy density:
    178.15 W·h/kg at power density of 473.3 W/kg
    [61]
    Pinecone8080.282 electrodesCs: 69 F/g at 0.5 A/g
    Energy density:
    24.6 W·h/kg at power density of 400 W/kg
    [62]
    Biomethanated spent wash889.790.45320.3283 electrodesCs: 120 F/g at 0.1 A/g
    Cycling stability:
    >97%, 1000 cycles
    [63]
    Citrus limon peel537.10.3322 electrodesCs: 362.66 F/g at 2 A/g
    Cycling stability: 70%, 5000 cycles
    Energy density:
    41.5 W·h/kg at power density of 540.32 W/kg
    [64]
    Fish scale9620.410.343 electrodesCs: 519 F/g at 0.1 A/g
    Rate capability: 77.8%,
    from 1 A/g to 200 A/g
    Energy density:
    12.8 W·h/L at power density of 26.5 W/L
    [65]
    The sliced bread1644.60.690.472 electrodesCs: 229 F/g at 0.2 A/g
    Cycling stability: 95.5%, 5000 cycles
    Energy density:
    31.8 W·h/kg at power density of 0.4 kW/kg
    [66]
    The rambutan peel9330.4590.3593 electrodesCs:137 F/g at 0.5 A/g
    Cycling stability: 82%, 5000 cycles
    Energy density:
    9.2 W·h/kg at power density of 1293.7 W/kg
    [67]
    Pig nail2563.31.350.513 electrodesCs: 251.4 F/g at 1 A/g
    Rate capability: 80.7%,
    from 1 A/g to 10 A/g
    Cycling stability: 99%, 5000 cycles
    Energy density:
    29.43 W·h/kg at power density of 847.9 W/kg
    [68]
    Notes: SSA—Specific surface area; Cs—Specific capacitance.
    下载: 导出CSV
  • [1] POONAM, SHARMA K, ARORA A, et al. Review of supercapacitors: Materials and devices[J]. Journal of Energy Storage,2019,21:801-825. doi: 10.1016/j.est.2019.01.010
    [2] RAZA W, ALI F, RAZA N, et al. Recent advancements in supercapacitor technology[J]. Nano Energy,2018,52:441-473. doi: 10.1016/j.nanoen.2018.08.013
    [3] LI B, DAI F, XIAO Q, et al. Nitrogen-doped activated carbon for a high energy hybrid supercapacitor[J]. Energy & Environmental Science,2016,9(1):102-106.
    [4] WANG Y, XIA Y. Recent progress in supercapacitors: From materials design to system construction[J]. Advanced Materials,2013,25(37):5336-5342. doi: 10.1002/adma.201301932
    [5] SHAKER M, GHAZVINI A A S, CAO W, et al. Biomass-derived porous carbons as supercapacitor electrodes—A review[J]. New Carbon Materials,2021,36(3):546-572. doi: 10.1016/S1872-5805(21)60038-0
    [6] 王久臣, 戴林, 田宜水, 等. 中国生物质能产业发展现状及趋势分析[J]. 农业工程学报, 2007(9):276-282. doi: 10.3321/j.issn:1002-6819.2007.09.053

    WANG Jiuchen, DAI Lin, TIAN Yishui, et al. Analysis of the development status and trends of biomass energy industry in China[J]. Transactions of the Chinese Society of Agricultural Engineering,2007(9):276-282(in Chinese). doi: 10.3321/j.issn:1002-6819.2007.09.053
    [7] AZWAR E, WAN MAHARI W A, CHUAH J H, et al. Transformation of biomass into carbon nanofiber for supercapacitor application—A review[J]. International Journal of Hydrogen Energy,2018,43(45):20811-20821. doi: 10.1016/j.ijhydene.2018.09.111
    [8] KANG D, LIU Q, GU J, et al. "Egg-Box"-assisted fabrication of porous carbon with small mesopores for high-rate electric double layer capacitors[J]. ACS Nano,2015,9(11):11225-11233. doi: 10.1021/acsnano.5b04821
    [9] ZHENG X, LUO J, LV W, et al. Two-dimensional porous carbon: Synthesis and ion-transport properties[J]. Advanced Materials,2015,27(36):5388-5395. doi: 10.1002/adma.201501452
    [10] ANWAR Z, GULFRAZ M, IRSHAD M. Agro-industrial lignocellulosic biomass a key to unlock the future bio-energy: A brief review[J]. Journal of Radiation Research and Applied Sciences,2019,7(2):163-173.
    [11] YANG H, YAN R, CHEN H, et al. Characteristics of hemicellulose, cellulose and lignin pyrolysis[J]. Fuel,2007,86(12-13):1781-1788. doi: 10.1016/j.fuel.2006.12.013
    [12] LUO W, SCHARDT J, BOMMIER C, et al. Carbon nanofibers derived from cellulose nanofibers as a long-life anode material for rechargeable sodium-ion batteries[J]. Journal of Materials Chemistry A, 2013, 1(36): 10662-10666.
    [13] GIRGIS B S, SOLIMAN A M, FATHY N A. Development of micro-mesoporous carbons from several seed hulls under varying conditions of activation[J]. Microporous & Mesoporous Materials,2011,142(2-3):518-525.
    [14] ZHAN Y, BAI J, GUO F, et al. Facile synthesis of biomass-derived porous carbons incorporated with CuO nanoparticles as promising electrode materials for high-performance supercapacitor applications[J]. Journal of Alloys and Compounds,2021,885:161014.
    [15] NGUYEN N T, LE P A, PHUNG V. Biomass-derived carbon hooks on Ni foam with free binder for high performance supercapacitor electrode[J]. Chemical Engineering Science,2020,229:116053.
    [16] ZHAN Y, ZHOU H, GUO F, et al. Preparation of highly porous activated carbons from peanut shells as low-cost electrode materials for supercapacitors[J]. Journal of Energy Storage,2021,34:102180.
    [17] ZHANG S, TIAN K, CHENG B H, et al. Preparation of N-doped supercapacitor materials by integrated salt templating and silicon hard templating by pyrolysis of biomass wastes[J]. ACS Sustainable Chemistry & Engineering,2017,5(8):6682-6691.
    [18] YANG H, YE S, ZHOU J, et al. Biomass-derived porous carbon materials for supercapacitor[J]. Frontiers in Chemistry,2019,7:274. doi: 10.3389/fchem.2019.00274
    [19] YANG F, CHU J, CHENG Y, et al. Hydrothermal synthesis of NiCo-layered double hydroxide nanosheets decorated on biomass carbon skeleton for high performance supercapacitor[J]. Chemical Research in Chinese Universities,2020,37(3):772-777.
    [20] MA H, CHEN Z, WANG X, et al. A simple route for hierarchically porous carbon derived from corn straw for supercapacitor application[J]. Journal of Renewable and Sustainable Energy, 2019, 11(2): 024012.
    [21] ZHANG X, SUN B, FAN X, et al. Building relationships between molecular composition of carbon precursor and capacitance of a hierarchical porous carbon-based supercapacitor[J]. ACS Applied Energy Materials,2021,4(1):985-995. doi: 10.1021/acsaem.0c02915
    [22] LIU D, YU S, SHEN Y, et al. Polyaniline coated boron doped biomass derived porous carbon composites for supercapacitor electrode materials[J]. Industrial & Engineering Chemistry Research,2015,54(50):12570-12579.
    [23] OUYANG J, WANG X, WANG L, et al. Construction of a porous carbon skeleton in wood tracheids to enhance charge storage for high-performance supercapacitors[J]. Carbon,2022,196:532-539. doi: 10.1016/j.carbon.2022.05.011
    [24] LOU X W D, ARCHER L A, YANG Z. Hollow micro-/nanostructures: Synthesis and applications[J]. Advanced Materials, 2008, 20(21): 3987-4019.
    [25] ARAVINDAN V, GNANARAJ J, LEE Y S, et al. Insertion-type electrodes for nonaqueous Li-ion capacitors[J]. Chemical Reviews,2014,114(23):11619-11635. doi: 10.1021/cr5000915
    [26] MA X, DING C, LI D, et al. A facile approach to prepare biomass-derived activated carbon hollow fibers from wood waste as high-performance supercapacitor electrodes[J]. Cellulose,2018,25(8):4743-4755. doi: 10.1007/s10570-018-1903-3
    [27] CHANG J, GAO Z, WANG X, et al. Activated porous carbon prepared from paulownia flower for high performance supercapacitor electrodes[J]. Electrochimica Acta,2015,157:290-298. doi: 10.1016/j.electacta.2014.12.169
    [28] WEI T, WEI X, YANG L, et al. A one-step moderate-explosion assisted carbonization strategy to sulfur and nitrogen dual-doped porous carbon nanosheets derived from camellia petals for energy storage[J]. Journal of Power Sources,2016,331:373-381. doi: 10.1016/j.jpowsour.2016.09.053
    [29] TAN Y, XU Z, HE L, et al. Three-dimensional high graphitic porous biomass carbon from dandelion flower activated by K2FeO4 for supercapacitor electrode[J]. Journal of Energy Storage,2022,52:104889.
    [30] RODRÍGUEZ-REINOSO F, MOLINA-SABIO M. Activated carbons from lignocellulosic materials by chemical and/or physical activation: An overview[J]. Carbon,1992,30(7):1111-1118. doi: 10.1016/0008-6223(92)90143-K
    [31] PARK M H, YUN Y S, CHO S Y, et al. Waste coffee grounds-derived nanoporous carbon nanosheets for supercapacitors[J]. Carbon Letters,2016,19:66-71. doi: 10.5714/CL.2016.19.066
    [32] WANG C H, WEN W C, HSU H C, et al. High-capacitance KOH-activated nitrogen-containing porous carbon material from waste coffee grounds in supercapacitor[J]. Advanced Powder Technology,2016,27(4):1387-1395. doi: 10.1016/j.apt.2016.04.033
    [33] HE W, REN P G, DAI Z, et al. Hierarchical porous carbon composite constructed with 1-D CNT and 2-D GNS anchored on 3-D carbon skeleton from spent coffee grounds for supercapacitor[J]. Applied Surface Science,2021,588:149899.
    [34] MENG D, WU C, HU Y, et al. Ingenious synthesis of chitosan-based porous carbon supercapacitors with large specific area by a small amount of potassium hydroxide[J]. Journal of Energy Storage,2022,51:104341.
    [35] YU M, JI X, RAN F. Chemically building interpenetrating polymeric networks of Bi-crosslinked hydrogel macromolecules for membrane supercapacitors[J]. Carbohydrate Polymers: Scientific and Technological,2021,255:117346. doi: 10.1016/j.carbpol.2020.117346
    [36] HU Y, TONG X, ZHUO H, et al. Biomass-based porous N-self-doped carbon framework/polyaniline composite with outstanding supercapacitance[J]. ACS Sustainable Chemistry& Engineering,2017,5(10):8663-8674.
    [37] 周亚丽, 雷西萍, 于婷, 等. 壳聚糖碳气凝胶原位负载Fe3O4的制备及其电化学性能[J]. 硅酸盐学报, 2021, 49(10):2164-2171.

    ZHOU Yali, LEI Xiping, YU Ting, et al. Preparation and electrochemical properties of carbon aerogel in-situ loaded Fe3O4 based on chitosan[J]. Journal of the Chinese Ceramic Society,2021,49(10):2164-2171(in Chinese).
    [38] YE W, CAI J, YU F, et al. Nitrogen-doped bagasse carbon spheres/graphene composite for high-performance supercapacitors[J]. Biomass and Bioenergy,2021,145:105949.
    [39] ZHENG G, HUANG Z, LIU Z. Cooperative utilization of beet pulp and industrial waste fly ash to produce N/P/O self-co-doped hierarchically porous carbons for high-performance supercapacitors[J]. Journal of Power Sources,2021,482:228935.
    [40] GHORBANI F, KAMARI S, ZAMANI S, et al. Optimization and modeling of aqueous Cr(VI) adsorption onto activated carbon prepared from sugar beet bagasse agricultural waste by application of response surface methodology[J]. Surfaces and Interfaces,2020,18:100444.
    [41] OKONKWO C A, MENKITI M C, OBIORA-OKAFO I A, et al. Controlled pyrolysis of sugarcane bagasse enhanced mesoporous carbon for improving capacitance of supercapacitor electrode[J]. Biomass and Bioenergy,2021,146:105996.
    [42] SARKAR S, ARYA A, GAUR U K, et al. Investigations on porous carbon derived from sugarcane bagasse as an electrode material for supercapacitors[J]. Biomass and Bioenergy,2020,142:105730.
    [43] ZHANG Y, CHEN H, WANG S, et al. Facile fabrication and structure control of SiO2/carbon via in situ doping from liquefied bio-based sawdust for supercapacitor applications[J]. Industrial Crops and Products,2020,151:112490.
    [44] LIU T, LAN Y, ZHU Q, et al. Potassium humate carbon derived from chlorination roast quenching of municipal sludge for high-performance supercapacitor electrodes[J]. Chemical Engineering Journal,2021,421(1):129993.
    [45] WANG C, XIONG Y, WANG H, et al. Naturally three-dimensional laminated porous carbon network structured short nano-chains bridging nanospheres for energy storage[J]. Journal of Materials Chemistry A,2017,5(30):15759-15770. doi: 10.1039/C7TA04178K
    [46] TENG Z, HAN K, LI J, et al. Ultrasonic-assisted preparation and characterization of hierarchical porous carbon derived from garlic peel for high-performance supercapacitors[J]. Ultrasonics Sonochemistry,2020,60:104756. doi: 10.1016/j.ultsonch.2019.104756
    [47] WANG Z, TAN Y, YANG Y, et al. Pomelo peels-derived porous activated carbon microsheets dual-doped with nitrogen and phosphorus for high performance electrochemical capacitors[J]. Journal of Power Sources,2018,378:499-510. doi: 10.1016/j.jpowsour.2017.12.076
    [48] CHEN H, LEI X, YU T, et al. Ultra-high specific capacitance of self-doped 3 D hierarchical porous turtle shell-derived activated carbon for high-performance supercapacitors[J]. Ceramics International,2022,48(4):5289-5298. doi: 10.1016/j.ceramint.2021.11.072
    [49] ZHAO J, GONG J, ZHOU C, et al. Utilizing human hair for solid-state flexible fiber-based asymmetric supercapacitors[J]. Applied Surface Science,2020,508:145260.
    [50] ZHANG Y, HE J, GAO Z, et al. Converting eggs to flexible, all-solid supercapacitors[J]. Nano Energy,2019,65:104045.
    [51] NIU J, SHAO R, LIANG J, et al. Biomass-derived mesopore-dominant porous carbons with large specific surface area and high defect density as high performance electrode materials for Li-ion batteries and supercapacitors[J]. Nano Energy,2017,36:322-330. doi: 10.1016/j.nanoen.2017.04.042
    [52] TARIMO D J, OYEDOTUN K O, SYLLA N F, et al. Waste chicken bone-derived porous carbon materials as high performance electrode for supercapacitor applications[J]. Journal of Energy Storage,2022,51:104378.
    [53] BREBU M, SPIRIDON I. Thermal degradation of keratin waste[J]. Journal of Analytical and Applied Pyrolysis,2011,91(2):288-295. doi: 10.1016/j.jaap.2011.03.003
    [54] LIU W, FENG K, ZHANG Y, et al. Hair-based flexible knittable supercapacitor with wide operating voltage and ultra-high rate capability[J]. Nano Energy,2017,34:491-499. doi: 10.1016/j.nanoen.2017.03.022
    [55] LI Z, XU Z, TAN X, et al. Mesoporous nitrogen-rich carbons derived from protein for ultra-high capacity battery anodes and supercapacitors[J]. Energy & Environmental Science, 2013, 6(3): 871-878.
    [56] LI F, WU X, JI W, et al. Effects of pyrolysis temperature on properties of swine manure biochar and its environmental risks of heavy metals[J]. Journal of Analytical and Applied Pyrolysis,2020,152:104945.
    [57] BHATTACHARJYA D, YU J S. Activated carbon made from cow dung as electrode material for electrochemical double layer capacitor[J]. Journal of Power Sources,2014,262:224-231. doi: 10.1016/j.jpowsour.2014.03.143
    [58] RAMALINGAM R J, SIVACHIDAMBARAM M, VIJAYA J J, et al. Synthesis of porous activated carbon powder formation from fruit peel and cow dung waste for modified electrode fabrication and application[J]. Biomass and Bioenergy,2020,142:105800.
    [59] ZHANG C, ZHU X, CAO M, et al. Hierarchical porous carbon materials derived from sheep manure for high-capacity supercapacitors[J]. ChemSusChem,2016,9(9):932-937. doi: 10.1002/cssc.201501624
    [60] ZHANG S, SU Y, ZHU S, et al. Effects of pretreatment and FeCl3 preload of rice husk on synthesis of magnetic carbon composites by pyrolysis for supercapacitor application[J]. Journal of Analytical and Applied Pyrolysis,2018,135:22-31. doi: 10.1016/j.jaap.2018.09.026
    [61] DU W, WANG X, SUN X, et al. Nitrogen-doped hierarchical porous carbon using biomass-derived activated carbon/carbonized polyaniline composites for supercapacitor electrodes[J]. Journal of Electroanalytical Chemistry,2018,827:213-220. doi: 10.1016/j.jelechem.2018.09.031
    [62] BARZEGAR F, BELLO A, DANGBEGNON J K, et al. Asymmetric supercapacitor based on activated expanded graphite and pinecone tree activated carbon with excellent stability[J]. Applied Energy,2017,207:417-426. doi: 10.1016/j.apenergy.2017.05.110
    [63] MAHTO A, GUPTA R, GHARA K K, et al. Development of high-performance supercapacitor electrode derived from sugar industry spent wash waste[J]. Journal of Hazardous Materials,2017,340:189-201. doi: 10.1016/j.jhazmat.2017.06.048
    [64] TIWARI B, JOSHI A, MUNJAL M, et al. Synergistic combination of N/P dual-doped activated carbon with redox-active electrolyte for high performance supercapacitors[J]. Journal of Physics and Chemistry of Solids,2022,161:110449.
    [65] LIU M, NIU J, ZHANG Z, et al. Potassium compound-assistant synthesis of multi-heteroatom doped ultrathin porous carbon nanosheets for high performance supercapacitors[J]. Nano Energy,2018,51:366-372. doi: 10.1016/j.nanoen.2018.06.037
    [66] HAO P, CUI G, SHI X, et al. High performance supercapacitors from hierarchical porous carbon aerogels based on sliced bread[J]. Chinese Journal of Chemistry,2017,35(5):699-706. doi: 10.1002/cjoc.201600722
    [67] LI M, YU J, WANG X, et al. 3D porous MnO2@carbon nanosheet synthesized from rambutan peel for high-performing supercapacitor electrodes materials[J]. Applied Surface Science,2020,530:147230.
    [68] TANG L, ZHOU Y, ZHOU X, et al. Enhancement in electrochemical performance of nitrogen-doped hierarchical porous carbon-based supercapacitor by optimizing activation temperature[J]. Journal of Materials Science: Materials in Electronics,2018,30(3):2600-2609.
  • 加载中
图(4) / 表(1)
计量
  • 文章访问数:  1111
  • HTML全文浏览量:  614
  • PDF下载量:  110
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-28
  • 修回日期:  2022-06-12
  • 录用日期:  2022-06-18
  • 网络出版日期:  2022-06-29
  • 刊出日期:  2023-03-15

目录

    /

    返回文章
    返回