留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

颗粒局域共振增强仿生复合材料中应力波的衰减行为

洪爽 于瀛洋 张作启

洪爽, 于瀛洋, 张作启. 颗粒局域共振增强仿生复合材料中应力波的衰减行为[J]. 复合材料学报, 2024, 42(0): 1-10.
引用本文: 洪爽, 于瀛洋, 张作启. 颗粒局域共振增强仿生复合材料中应力波的衰减行为[J]. 复合材料学报, 2024, 42(0): 1-10.
HONG Shuang, YU Yingyang, ZHANG Zuoqi. Locally resonant particles enhance the stress wave attenuation in bioinspired composites[J]. Acta Materiae Compositae Sinica.
Citation: HONG Shuang, YU Yingyang, ZHANG Zuoqi. Locally resonant particles enhance the stress wave attenuation in bioinspired composites[J]. Acta Materiae Compositae Sinica.

颗粒局域共振增强仿生复合材料中应力波的衰减行为

基金项目: 国家自然科学基金(11720101002; 12272279; 11772240);湖北省重点研发计划项目(2021BCA106)
详细信息
    通讯作者:

    张作启,博士,教授,博士生导师,研究方向为生物力学与仿生 E-mail: zhang_zuoqi@whu.edu.cn

  • 中图分类号: TB332; TB333

Locally resonant particles enhance the stress wave attenuation in bioinspired composites

Funds: National Natural Science Foundation of China (11720101002; 12272279; 11772240); Hubei Province Key R&D Program Project (2021BCA106)
  • 摘要: 快速衰减应力波的冲击防护复合材料在民防、装甲、舰船等许多工业领域有着巨大的需求。受蜻蜓翅膀的启发,本文提出了基于颗粒局域共振原理的仿生微结构防护复合材料设计。研究发现:(1)当入射波频率接近局域共振单元的固有频率时,局域共振机制被最大程度激发,大量的入射应力波能量转化为颗粒的机械能;(2)单元固有频率随重芯直径、密度、软涂层厚度增大而减小,随软涂层弹性模量增大而增大;(3)在复合材料中引入不同固有频率单元的混杂设计,可以实现对宽频域入射应力波的高效衰减。本研究对于利用局域共振原理和仿生微结构开发设计高性能冲击防护复合材料具有指导意义。

     

  • 图  1  (a)声子晶体基本结构单元[7];(b)元混凝土简谐激励下杆件示意图[22];(c)蜻蜓前翼[26];(d)蜻蜓前翼翼眼结构扫描电镜图片[28];(e)局域共振颗粒增强复合材料有限元模型示意图和网格展示

    Figure  1.  (a) A typical structural unit of phononic crystal[7]; (b) Schematic of rod under simple harmonic excitation of meta-concrete[22]; (c) Dragonfly forewing[26]; (d) Scanning electron microscope image of dragonfly forewing eye structure[28]; (e) Schematic and mesh display of finite element model of locally resonant particle-reinforced composites

    图  2  局域共振胞元示意图(a)、几何参数(b)、前六阶基本模态(c)

    Figure  2.  Schematic diagram (a), geometrical parameters (b), first to sixth order oscillation modes (c) of the local resonance unit cell

    $ {m}_{\mathrm{m}} $—Quality of the matrix; $ {m}_{\mathrm{p}} $—Quality of the heavy core; $ {u}_{\mathrm{p}} $—Displacement of the heavy core in the horizontal direction; $ {u}_{\mathrm{m}} $—Displacement of the matrix in the horizontal direction; k0—Spring Stiffness; L—Length of square cell element; d—Diameter of the heavy core; a—Thickness of the coating

    图  3  主要设计参数对局域共振胞元固有频率的影响:(a)重芯直径;(b)软涂层厚度;(c)重芯密度;(d)软涂层弹性模量

    Figure  3.  Effect of diameter of heavy core (a), thickness of soft coating (b), density of heavy core (c), modulus of elasticity of soft coating (d) on the intrinsic frequency of locally resonant unit cell

    图  4  常规颗粒增强复合材料模型(a)和局域共振模型(b)在不同时刻下x方向位移云图

    Figure  4.  (a) x-direction displacement cloud at different moments for the conventional particle reinforced composite model and the local resonance model (b)

    图  5  (a)常规颗粒增强复合材料模型和局域共振模型颗粒机械能占比;(b)常规颗粒增强复合材料模型和局域共振模型$ {\sigma }_{xx} $时程曲线;(c)不同入射频率下局域颗粒机械能占比

    Figure  5.  (a) Mechanical energy share of particles for the conventional particle reinforced composite model and the local resonance model; (b) Historical curves of $ {\sigma }_{xx} $ after the conventional particle reinforced composite and the locally resonant composite with comparison to that in the matrix before the composite region; (c) Mechanical energy share of particles in the locally resonant composite under different incident frequencies

    图  6  (a)双频局域共振颗粒组合复合材料模型:以0.2-0.4混合为例,红框颗粒固有频率0.2 MHz,黄框颗粒固有频率0.4 MHz;(b)常规颗粒增强复合材料模型和局域共振模型应力波衰减率比较;(c) 0.2 MHz、0.4 MHz入射频率下常规颗粒增强复合材料模型和局域共振模型颗粒机械能占比时间历程曲线

    Figure  6.  (a) Dual-frequency combined composite model:0.2-0.4 mixing taken for an example, 0.2 MHz intrinsic frequency of particles in red box, while 0.4 MHz intrinsic frequency of particles in yellow box; (b) Comparison of the attenuation rate of the stress wave among the conventional particle reinforced composite model and the local resonance models; (c) Comparison of the share of mechanical energy of the particles among the conventional particle reinforced composite model and the local resonance models for the incident frequencies of 0.2 MHz and 0.4 MHz, respectively

    图  7  (a)三频率组合有限元模型:以0.2-0.4-0.6混合为例,红框颗粒固有频率0.2 MHz,黄框颗粒固有频率0.4 MHz,蓝框颗粒固有频率0.6 MHz;(b)常规颗粒增强复合材料模型和局域共振模型应力波衰减率比较;(c) 0.2 MHz、0.4 MHz、0.6 MHz入射频率下常规颗粒增强复合材料模型和局域共振模型颗粒机械能占比的比较

    Figure  7.  (a) Three-frequency combination model, here taking 246 mixture as an example, natural frequency of particle 0.2 MHz in red frame, 0.4 MHz in yellow frame, 0.6 MHz in blue frame; (b) Comparison of stress wave attenuation rates among the conventional particle reinforced composite model and local resonance models; (c) Comparison of particle mechanical energy proportion among the conventional particle reinforced composite model and local resonance models for 0.2 MHz, 0.4 MHz, 0.6 MHz incident frequency

    表  1  模拟所用材料参数

    Table  1.   Material parameters used for FEM simulations

    Material $ E/\mathrm{M}\mathrm{P}\mathrm{a} $ $ \rho / $($ \mathrm{k}\mathrm{g}·{\mathrm{m}}^{-3}) $ $ \nu $
    Matrix $ 70 $ 1070 0.465
    Heavy core $ 6500 $ 2500 0.25
    Soft coating $ 0.118 $ 1300 0.469
    下载: 导出CSV
  • [1] HIRSEKORN M. Small-size sonic crystals with strong attenuation bands in the audible frequency range[J]. Applied Physics Letters, 2004, 84(17): 3364-3366. doi: 10.1063/1.1723688
    [2] 温激鸿, 韩小云, 王刚, 等. 声子晶体研究概述[J]. 功能材料, 2003, (4): 364-7. doi: 10.3321/j.issn:1001-9731.2003.04.004

    WEN Jihong, HAN Xiaoyun, WANG Gang, et al. Review of phononic crystals[J]. Journal of Functional Materials, 2003, (4): 364-7(in Chinese). doi: 10.3321/j.issn:1001-9731.2003.04.004
    [3] KHELIF A, ADIBI A. Phononic Crystals [M]. 2016.
    [4] LU M-H, FENG L, CHEN Y-F. Phononic crystals and acoustic metamaterials[J]. Materials Today, 2009, 12(12): 34-42. doi: 10.1016/S1369-7021(09)70315-3
    [5] PENNEC Y, VASSEUR J O, DJAFARI-ROUHANI B, et al. Two-dimensional phononic crystals: Examples and applications[J]. Surface Science Reports, 2010, 65(8): 229-91. doi: 10.1016/j.surfrep.2010.08.002
    [6] HO K M, CHENG C K, YANG Z, et al. Broadband locally resonant sonic shields[J]. Applied Physics Letters, 2003, 83(26): 5566-8. doi: 10.1063/1.1637152
    [7] LIU Z, ZHANG X, MAO Y, et al. Locally resonant sonic materials[J]. Science, 2000, 289(5485): 1734-6. doi: 10.1126/science.289.5485.1734
    [8] LIU Z, CHAN C T, SHENG P. Analytic model of phononic crystals with local resonances[J]. Physical Review B, 2005, 71(1): 014103(1-8).
    [9] SMITH D R, PENDRY J B, WILTSHIRE M C. Metamaterials and negative refractive index[J]. Science, 2004, 305(5685): 788-92. doi: 10.1126/science.1096796
    [10] ZHANG X, LIU Z. Negative refraction of acoustic waves in two-dimensional phononic crystals[J]. Applied Physics Letters, 2004, 85(2): 341-3. doi: 10.1063/1.1772854
    [11] DING Y, LIU Z, QIU C, et al. Metamaterial with simultaneously negative bulk modulus and mass density[J]. Phys Rev Lett, 2007, 99(9): 093904. doi: 10.1103/PhysRevLett.99.093904
    [12] HIRSEKORN M, DELSANTO P P, BATRA N K, et al. Modelling and simulation of acoustic wave propagation in locally resonant sonic materials[J]. Ultrasonics, 2004, 42(1-9): 231-5. doi: 10.1016/j.ultras.2004.01.014
    [13] DUPONT G, MOVCHAN A, ENOCH S, et al. Analysis of Low Frequency Acoustic Stop Bands in Cubic Arrays of Thick Spherical Shells With Holes[J]. Frontiers in Materials, 2019, 6: 50. doi: 10.3389/fmats.2019.00050
    [14] ZHAO J, LI Y, LIU W K. Predicting band structure of 3D mechanical metamaterials with complex geometry via XFEM[J]. Computational Mechanics, 2015, 55(4): 659-72. doi: 10.1007/s00466-015-1129-2
    [15] ZHU R, HUANG H H, HUANG G L, et al. Microstructure continuum modeling of an elastic metamaterial[J]. International Journal of Engineering Science, 2011, 49(12): 1477-85. doi: 10.1016/j.ijengsci.2011.04.005
    [16] SEGALA D B, CAVALLARO P V. Numerical investigation of energy absorption mechanisms in unidirectional composites subjected to dynamic loading events[J]. Computational Materials Science, 2014, 81: 303-12. doi: 10.1016/j.commatsci.2013.08.039
    [17] LI Z, WANG X. On the dynamic behaviour of a two-dimensional elastic metamaterial system[J]. International Journal of Solids and Structures, 2016, 78-79: 174-81. doi: 10.1016/j.ijsolstr.2015.08.028
    [18] PAI P F. Metamaterial-based Broadband Elastic Wave Absorber[J]. Journal of Intelligent Material Systems and Structures, 2010, 21(5): 517-28. doi: 10.1177/1045389X09359436
    [19] PENG H, FRANK PAI P, DENG H. Acoustic multi-stopband metamaterial plates design for broadband elastic wave absorption and vibration suppression[J]. International Journal of Mechanical Sciences, 2015, 103: 104-14. doi: 10.1016/j.ijmecsci.2015.08.024
    [20] MILTON G W, NICOROVICI N-A P. On the cloaking effects associated with anomalous localized resonance[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2006, 462(2074): 3027-59. doi: 10.1098/rspa.2006.1715
    [21] MITCHELL S J, PANDOLFI A, ORTIZ M. Metaconcrete: designed aggregates to enhance dynamic performance[J]. Journal of the Mechanics and Physics of Solids, 2014, 65: 69-81. doi: 10.1016/j.jmps.2014.01.003
    [22] XU C, CHEN W, HAO H, et al. Effect of engineered aggregate configuration and design on stress wave attenuation of metaconcrete rod structure[J]. International Journal of Solids and Structures, 2021, 232: 111182 doi: 10.1016/j.ijsolstr.2021.111182
    [23] KETTENBEIL C, RAVICHANDRAN G. Experimental investigation of the dynamic behavior of metaconcrete[J]. International Journal of Impact Engineering, 2018, 111: 199-207. doi: 10.1016/j.ijimpeng.2017.09.017
    [24] NOUH M, ALDRAIHEM O, BAZ A. Wave propagation in metamaterial plates with periodic local resonances[J]. Journal of Sound and Vibration, 2015, 341: 53-73. doi: 10.1016/j.jsv.2014.12.030
    [25] JONGERIUS S R, LENTINK D. Structural Analysis of a Dragonfly Wing[J]. Experimental Mechanics, 2010, 50(9): 1323-34. doi: 10.1007/s11340-010-9411-x
    [26] CHEN J-S, CHEN J-Y, CHOU Y-F. On the natural frequencies and mode shapes of dragonfly wings[J]. Journal of Sound and Vibration, 2008, 313(3-5): 643-54. doi: 10.1016/j.jsv.2007.11.056
    [27] SUN J, BHUSHAN B. The structure and mechanical properties of dragonfly wings and their role on flyability[J]. Comptes Rendus Mécanique, 2012, 340(1-2): 3-17.
    [28] RAJABI H, MOGHADAMI M, DARVIZEH A. Investigation of microstructure, natural frequencies and vibration modes of dragonfly wing[J]. Journal of Bionic Engineering, 2011, 8(2): 165-73. doi: 10.1016/S1672-6529(11)60014-0
  • 加载中
计量
  • 文章访问数:  27
  • HTML全文浏览量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-07
  • 修回日期:  2024-04-13
  • 录用日期:  2024-04-25
  • 网络出版日期:  2024-06-14

目录

    /

    返回文章
    返回