Micro-fracture behaviors of 3D needle punching fabric reinforced nanoporous phenolic composites based on in-situ X-ray
-
摘要:
三维针刺是一种低成本、易成型的立体织物制造技术。通过引入空间内随机分布的短切网胎纤维,能够有效切断纤维的热传导并降低材料的密度;进一步,通过引入纤维布可以在不影响材料在厚度方向的隔热性基础上,大幅提高复合材料的力学强度。然而针刺的随机性会给材料的损伤演化、力学分析和性能预测带来极大的挑战。本文以纤维布/网胎交替叠层针刺增强的纳米孔树脂基防隔热复合材料为例,采用原位拉伸 X 射线 micro-CT 技术,揭示了复合材料在轴向拉伸载荷下的损伤演化过程。并采用纤维中心线自动跟踪算法对采集的三维图形数据化处理,量化分析了纤维在拉伸过程中的角度偏转。最后基于 micro-CT 重构的三维结构,建立了高精度的有限元分析模型,并进行了轴向拉伸行为分析。结果表明:复合材料中的损伤始于材料的最外层,其中网胎层中的微裂纹主要产生于针刺位点处的局部富树脂区域,而纤维布层中的微裂纹主要源于纤维束中紧密排布的纤维之间;纤维布可以通过阻隔裂纹向材料内部继续扩展的方式,提升材料的韧性;在轴向拉伸载荷下,材料中的纤维会一致地向外部发生偏转,表现出负泊松比的性质,避免了断口处的“颈缩”现象;有限元分析与 实验的结果吻合良好。本文的研究方法和结果可为三维复杂结构材料的微观断裂分析、性能预测与结构优化提供参考。 原位拉伸X射线micro-CT实验方式与结果Method and results of in-situ tensile X-ray micro-CT -
关键词:
- 原位micro-CT 技术 /
- 损伤演化 /
- 针刺纤维预制体 /
- 有限元分析 /
- 纳米孔树脂
Abstract: Alternately stacking needling technology is a straightforward way to prepare three-dimensional (3D) fabrics, but randomly needling process will bring great challenges to the damage evolution, mechanical analysis and property prediction. In this paper, the damage evolution of nanoporous phenolic composites reinforced by alternately stacking fiber felt and woven fabric was revealed by in-situ X-ray micro-CT device. And the angle deflections of fiber were described quantitatively under the loading of axial tensile by automatic tracing of microtubule centerlines. Finally, based on the 3D reconstructed structure, a high-precision finite element analysis model was established, and the axial tension mechanical behavior analysis was carried out. The results show that the damage in composite starts from the outmost layer where the microcracks in the fiber felt mainly originate from the resin-rich zone in the needling aera, while the microcracks in the woven fabric are among filaments in fiber bundle. Besides, the woven fabric can improve the toughness of composite by preventing the microcrack expanding into the inner. The fibers in composite will consistently deflect to the outside, showing the property of negative Poisson's ratio, avoiding the "neck contraction" phenomenon at the fracture. The finite element analysis agrees with the results of experiments. The methods and results in this paper can provide a precious reference for microscopic fracture analysis, property prediction and structural optimization of complex 3D composite.-
Key words:
- in-situ micro-CT /
- damage evolution /
- needling fabric /
- finite element analysis /
- nanoporous resin
-
图 1 (a) 试样结构示意图;(b) 原位拉伸X射线断层扫描装置;三维针刺预制体增强纳米孔酚醛复合材料的原始三维结构(c)、面内拉伸预实验的位移-载荷曲线(d)和不同应变下对应的三维微结构(e)~(h)
Figure 1. (a) Shape of in-situ tensile specimen; (b) Diagram of in-situ X-ray CT setup and test; Virgin 3 D microstructure of composite (c), displacement vs. load curves of composite in-plane tensile pre-test (d) and corresponding 3 D microstructure (e)-(h) of needle punching fabric reinforced nanoporous phenolic composites under various strains
图 2 三维针刺预制体增强纳米孔酚醛在不同拉伸阶段下的二维切片结构:(a)~(e) x-y 平面内网胎纤维;(f)~(j) 复合材料的y-z 截面;(k)~(o) x-y 平面内纤维布
Figure 2. 2 D slices of needle punching fabric reinforced nanoporous phenolic composites at different tensile stages: (a)-(e) Slices of fiber felt in x-y plane; (f)-(j) Cross section of composite in y-z plane; (k)-(o) Slices of woven fabric in x-y plane
图 3 基于不同力学阶段的micro-CT图像重构的三维针刺预制体增强纳米孔酚醛的纤维相:(a)~(e) x-y 平面内网胎纤维;(f)~(j) 复合材料的整体结构;(k)~(o) x-y 平面内纤维布
Figure 3. Fiber phase reconstructed based on micro-CT images in different stages of needle punching fabric reinforced nanoporous phenolic composites: (a)-(e) Fiber felt in x-y plane; (f)-(j) Overall of composite; (k)-(o) Woven fabric in x-y plane
图 5 重构纤维相的空间角度分布:(a)~(e) 复合材料中纤维的整体角度分布;(f)~(j) 外层网胎中的纤维角度分布;(k)~(o) 外层纤维布中的纤维角度分布
Figure 5. Spatial angle distribution of reconstructed fiber phase: (a)-(e) Overall angle distribution of fiber in composite; (f)-(j) Fiber angle distribution in outer fiber felt; (k)-(o) Fiber angle distribution in outer woven fabric
图 6 三维针刺预制体增强纳米孔酚醛复合材料高精度有限元模型的构建:(a)~(d) 纤维布中纤维相的提取、重构与转换;(e)~(h) 网胎层中纤维相的提取、重构与转换;(i)~(l) Abaqus高精度有限元的构建与网格划分
Figure 6. Construction of high-precision finite element model of needle punching fabric reinforced nanoporous phenolic composites: (a)-(d) Extraction, reconstruction and conversion of fiber phase in woven fabric; (e)-(h) Extraction, reconstruction and conversion of fiber phase in fiber felt; (i)-(l) Construction and meshing of high-precision finite element model in Abaqus
图 7 三维针刺预制体增强纳米孔酚醛复合材料的高精度有限元分析结果:纤维网胎面(a)与纤维布面(b)的应力分布云图;纤维网胎面(c)与纤维布面(d)的应变分布云图;(e)~(f) 网胎纤维的应力分布云图;(g)~(h) 纤维布中的应力分布云图
Figure 7. Finite element analysis results of needle punching fabric reinforced nanoporous phenolic composite: Stress contour of fiber felt surface (a) and woven fabric surface (b); Strain contour of fiber felt surface (c) and woven fabric surface (d); Stress contour of fiber felt (e)-(f) and woven fabric (g)-(h)
图 8 纤维网胎层中的应力分布云图(a)和应变分布云图(b);纤维网胎层中针刺位点(c)和纤维附近基体(d)的局部应变云图;纤维布中的应力分布云图(e)和应变分布云图(f);纤维布中针刺位点(g)和纤维附近基体(h)的局部应变云图
Figure 8. Stress contour (a) and strain contour (b) of fiber felt layer; Local strain contour of needling point (c) and the matrix surrounding fiber (d) in fiber felt; Stress contour (e) and strain contour (f) of woven fabric layer; Local strain contour of needling point (g) and the matrix surrounding fiber (h) in woven fabric
表 1 有限元模拟中采用的增强体和基体的物理性质参数
Table 1. Physical property parameters of reinforcement and matrix in finite element analysis
Material Model Density/
(g∙cm−3)Young’s modulus/GPa Poisson's
ratioQuartz fiber Elastic 2.28 72 0.22 Phenolic matrix Elastic 0.67 1 0.3 -
[1] 董彦芝, 刘峰, 杨昌昊, 等. 探月工程三期月地高速再入返回飞行器防热系统设计与验证[J]. 中国科学:技术科学, 2015, 45(2):151-159.DONG Yanzhi, LIU Feng, YANG Changhao, et al. Design and verification of the TPS of the circumlunar free return and reentry flight vehicle for the 3 rd phase of Chinese lunar exploration program[J]. Scientia Sinica(Technologica),2015,45(2):151-159(in Chinese). [2] NATALI M, KENNY J M, TORRE L. Science and technology of polymeric ablative materials for thermal protection systems and propulsion devices: A review[J]. Progress in Materials Science,2016,84(DEC.):192-275. [3] CSP A, PRB B. Characterization of mechanical and thermal properties of high strength glass epoxy and rayon carbon phenolic composites[J]. Materials Today: Proceedings, 2018, 5(13, Part 3): 26898-26903. [4] TRAN H, JOHNSON C, RASKY D, et al. Phenolic Impregnated Carbon Ablators (PICA) for Discovery class missions[C]// 31 st Thermophysics Conference. 1996. [5] MUÑOZ R, MARTÍNEZ V, SKET F, et al. Mechanical behavior and failure micromechanisms of hybrid 3 D woven composites in tension[J]. Composites Part A:Applied Science and Manufacturing,2014,59:93-104. doi: 10.1016/j.compositesa.2014.01.003 [6] 张鸿宇, 钱震, 牛波, 等. 低密度纤维增强酚醛气凝胶复合材料的力学特性及断裂机制[J]. 复合材料学报, 2022, 39(8):3663-3673. doi: 10.13801/j.cnki.fhclxb.20210909.002ZHANG Hongyu, QIAN Zhen, NIU Bo, et al. Mechanical properties and fracture mechanisms of low-density fiber preforms reinforced phenolic aerogel composites[J]. Acta Materiae Compositae Sinica,2022,39(8):3663-3673(in Chinese). doi: 10.13801/j.cnki.fhclxb.20210909.002 [7] 谢军波. 针刺预制体工艺参数建模及复合材料本构关系研究[D]. 哈尔滨: 哈尔滨工业大学, 2016.XIE Junbo. Parametric modeling of needling process and constitutive relationship of needled composite [D]. Harbin: Harbin Institute of Technology, 2016 (in Chinese). [8] MCCORMICK N, LORD J. Digital image correlation[J]. Materials today,2010,13(12):52-54. doi: 10.1016/S1369-7021(10)70235-2 [9] XIE J, LIANG J, FANG G, et al. Effect of needling parameters on the effective properties of 3 D needled C/C-SiC composites[J]. Composites Science and Technology,2015,117:69-77. doi: 10.1016/j.compscitech.2015.06.003 [10] ZW A, SW B, GK A, et al. In-situ synchrotron X-ray tomography investigation on damage mechanism of an extruded magnesium alloy in uniaxial low-cycle fatigue with ratchetting[J]. Acta Materialia, 2021. [11] 钱震, 张鸿宇, 张琪凯, 等. 高强度-中密度纳米孔树脂基防隔热复合材料的制备与性能[J]. 复合材料学报: 1-102022-08-19]. QIAN Zhen, ZHANG Hongyu, ZHANG Qikai, et al. Preparation and properties of high strength - medium density nanoporous resin-based ablation/insulation integrated composites [J]. Acta Materiae Compositae Sinica, 1-10[2022-08-19] (in Chinese). [12] WESTENBERGER P. Comparison of fiber orientation analysis methods in Avizo [C]. Leuven, Belgium 2017: 7 th Conference on Industrial Computed Tomography. [13] 刘海龙, 张大旭, 祁荷音, 等. 基于X射线CT原位试验的平纹SiC/SiC复合材料拉伸损伤演化[J]. 上海交通大学学报, 2020, 54(10):1074-1083. doi: 10.16183/j.cnki.jsjtu.2019.274LIU Hailong, ZHANG Daxu, QI Hexiang, et al. Tensile Damage Evolution of Plain Weave SiC/SiC Composites Based on In-situ X-ray CT Tests[J]. Journal of shanghai jiao tong university,2020,54(10):1074-1083(in Chinese). doi: 10.16183/j.cnki.jsjtu.2019.274 [14] BO NIU, HONGYU ZHANG, ZHEN QIAN, et al. Micro-fracture behaviors of needled short-chopped fiber reinforced phenolic aerogel composites based on in-situ X-ray micro-CT[J]. Composites Communications,2022,33:101224. doi: 10.1016/j.coco.2022.101224 [15] Rigort A, Günther D, Hegerl R, et al. Automated segmentation of electron tomograms for a quantitative description of actin filament networks[J]. Journal of structural biology,2012,177(1):135-144. doi: 10.1016/j.jsb.2011.08.012 [16] Weber B, Greenan G, Prohaska S, et al. Automated tracing of microtubules in electron tomograms of plastic embedded samples of Caenorhabditis elegans embryos[J]. Journal of structural biology,2012,178(2):129-138. doi: 10.1016/j.jsb.2011.12.004 [17] MIAO M, GLASSEY H E, RASTOGI M. An experimental study of the needled nonwoven process: part III: fiber damage due to needling[J]. Textile research journal,2004,74(6):485-490. doi: 10.1177/004051750407400604 [18] 邱爽, 周金宇. 不同应力水平对碳纤维复合材料疲劳剩余刚度的影响[J]. 航空材料学报, 2018, 38(2):110-117.QIU Shuang, ZHOU Jinyu. Effect of different stress levels on fatigue residual stiffness of carbon fiber reinforced composites[J]. Journal of Aeronautical Materials,2018,38(2):110-117(in Chinese). [19] GE L, LI H, ZHONG J, et al. Micro-CT based trans-scale damage analysis of 3 D braided composites with pore defects[J]. Composites Science and Technology,2021,211:108830. doi: 10.1016/j.compscitech.2021.108830 [20] 龙舒畅. 纤维增强复合材料的非线性动力本构与冲击损伤破坏行为[D]. 广州: 华南理工大学, 2018.LONG Shuchang. Nonlinear dynamic constitutive and impact damage of carbon fiber reinforced polymer composites [D]. Guangzhou: South China University of Technology, 2018 (in Chinese). [21] 黄新波, 高玉菡, 张烨, 等. 基于联合分量灰度化算法和深度学习的玻璃绝缘子目标识别算法 [J]. 电力自动化设备, 2022, 42(04): 203-209.HUANG Xinbo, GAO Yuhan, ZHANG Ye, et al. Gray image recognition algorithm based on improved multi-scale sampling algorithm [J] Electric Power Automation Equipment, 2022, 42(04): 203-209 (in Chinese). [22] KARAMOV R, MARTULLI L M, KERSCHBAUM M, et al. Micro-CT based structure tensor analysis of fibre orientation in random fibre composites versus high-fidelity fibre identification methods[J]. Composite Structures,2020,235:111818. doi: 10.1016/j.compstruct.2019.111818 [23] MOUHMID B, IMAD A, BENSEDDIQ N, et al. An experimental analysis of fracture mechanisms of short glass fibre reinforced polyamide 6, 6 (SGFR-PA66)[J]. Composites science and technology,2009,69(15-16):2521-2526. doi: 10.1016/j.compscitech.2009.07.003 [24] WANG P, WEN J, LEI H, et al. Morphology characterization and in-situ three-dimensional strain field monitor of short carbon fiber-reinforced polymer composites under tension[J]. Composite Structures,2021,262:113634. doi: 10.1016/j.compstruct.2021.113634 [25] 欧阳利军, 许峰, 高皖扬, 等. 玄武岩纤维布约束高温损伤混凝土方柱轴压力学性能试验[J]. 复合材料学报, 2019, 36(2):469-481. doi: 10.13801/j.cnki.fhclxb.20180611.001OUYANG Lijun, XU Feng, GAO Wanyang, et al. Axial compressive behavior of basalt fiber reinforced polymer-confined damaged concrete after exposed to elevated temperatures[J]. Acta Materiae Compositae Sinica,2019,36(2):469-481(in Chinese). doi: 10.13801/j.cnki.fhclxb.20180611.001 [26] SHEFELBINE S J, SIMON U, CLAES L, et al. Prediction of fracture callus mechanical properties using micro-CT images and voxel-based finite element analysis[J]. Bone,2005,36(3):480-488. doi: 10.1016/j.bone.2004.11.007 [27] LENGSFELD M, SCHMITT J, ALTER P, et al. Comparison of geometry-based and CT voxel-based finite element modelling and experimental validation[J]. Medical engineering & physics,1998,20(7):515-522. [28] JIA Y, LIAO D, CUI H, et al. Modelling the needling effect on the stress concentrations of laminated C/C composites[J]. Materials & Design,2016,104:19-26. -