留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于数字图像技术的C/SiC复合材料拉伸行为与失效机制

黄鲛 陈婧旖 罗磊 李玉军 张毅 李斌

黄鲛, 陈婧旖, 罗磊, 等. 基于数字图像技术的C/SiC复合材料拉伸行为与失效机制[J]. 复合材料学报, 2022, 39(5): 2387-2397. doi: 10.13801/j.cnki.fhclxb.20210629.003
引用本文: 黄鲛, 陈婧旖, 罗磊, 等. 基于数字图像技术的C/SiC复合材料拉伸行为与失效机制[J]. 复合材料学报, 2022, 39(5): 2387-2397. doi: 10.13801/j.cnki.fhclxb.20210629.003
HUANG Jiao, CHEN Jingyi, LUO Lei, et al. Tensile behavior and failure mechanism of C/SiC composite based on digital image technology[J]. Acta Materiae Compositae Sinica, 2022, 39(5): 2387-2397. doi: 10.13801/j.cnki.fhclxb.20210629.003
Citation: HUANG Jiao, CHEN Jingyi, LUO Lei, et al. Tensile behavior and failure mechanism of C/SiC composite based on digital image technology[J]. Acta Materiae Compositae Sinica, 2022, 39(5): 2387-2397. doi: 10.13801/j.cnki.fhclxb.20210629.003

基于数字图像技术的C/SiC复合材料拉伸行为与失效机制

doi: 10.13801/j.cnki.fhclxb.20210629.003
基金项目: 国家自然基金(11902256);陕西省自然基金(2019JQ-479);国家自然科学基金(51802263);国家科技重大专项(2017-VI-0007-0077);中国博士后基金(2019M660254)
详细信息
    通讯作者:

    张毅,博士,助理研究员,硕士生导师,研究方向为陶瓷基复合材料 E-mail:zhangyit@nwpu.edu.cn

  • 中图分类号: TB332

Tensile behavior and failure mechanism of C/SiC composite based on digital image technology

  • 摘要: 本文通过二维平纹编织C/SiC复合材料的准静态单轴拉伸试验的数字图像相关(DIC)技术分析,研究损伤与应变的关系及最大应变处与断裂位置的关系。通过对材料的孔隙分析及断口分析,探究材料在损伤演化过程中内部结构的变化。结果表明,拉伸载荷作用下,材料的应变并不均匀。而层与层间损伤差异及相互影响导致最大应变位置一直变化。随着损伤的不断累积,最大应变位置处先发生断裂;材料的断裂失效位置往往与其结构薄弱程度及应力应变水平密切相关;断裂瞬间,多重拔出机制及各层结构差异性导致层与层的失效位置不同,造成分层失效。

     

  • 图  1  二维平纹编织C/SiC复合材料试样形状及有效区域局部二维结构

    Figure  1.  2D plain weave C/SiC composite specimen shape and local 2D structure in effective area

    图  2  二维平纹编织C/SiC复合材料试样表面的散斑图

    Figure  2.  Speckle image of 2D plain weave C/SiC composite specimen surface

    图  3  二维平纹编织C/SiC复合材料拉伸应力-应变曲线及应变场

    Figure  3.  Stress-strain curve and strain field of 2D plain weave C/SiC composite under tensile load

    图  4  二维平纹编织C/SiC复合材料横向开裂形式

    Figure  4.  Transverse cracking mode of 2D plain weave C/SiC composite

    图  5  二维平纹编织C/SiC复合材料纵向失效模式

    Figure  5.  Longitudinal failure modes of 2D plain weave C/SiC composite

    图  6  二维平纹编织C/SiC复合材料试样断口

    Figure  6.  Fracture of 2D plain weave C/SiC composite specimen

    图  7  二维平纹编织C/SiC复合材料试样断裂处与非断裂处孔隙直径分布图(对数正态分布拟合)

    Figure  7.  Pore diameter distribution at fracture and non-fracture sites of 2D plain weave C/SiC composite specimen (lognormal distribution fitting)

    表  1  二维平纹编织C/SiC复合材料拉伸性能

    Table  1.   Mechanical properties of 2D plain weave C/SiC composites under tensile load

    Number of sampleTensile modulus/GPaTensile strength/MPaStrain/%
    T1 151.60 261.35 0.553
    T2 113.46 279.43 0.580
    T3 113.89 278.63 0.626
    下载: 导出CSV

    表  2  拉伸各阶段二维平纹编织C/SiC复合材料DIC应变云图的变化

    Table  2.   Variation of DIC strain nephogram of 2D plain weave C/SiC composite at different stretching stages

    Stage(${\varepsilon _{yy\max }} = 0.626\% $)
    (I)
    ${\varepsilon _{yy}}$ $0$ $0.025{\varepsilon _{yy\max }}$ $0.05{\varepsilon _{yy\max }}$
    (Ⅱ)
    ${\varepsilon _{yy}}$ $0.2{\varepsilon _{yy\max }}$ $0.4{\varepsilon _{yy\max }}$ $0.6{\varepsilon _{yy\max }}$
    (Ⅲ)
    ${\varepsilon _{yy}}$ $0.8{\varepsilon _{yy\max }}$ $0.9{\varepsilon _{yy\max }}$ ${\varepsilon _{yy\max }}$
    Notes: ${\varepsilon _{yy}}$—Strain of the specimen in the loading direction; ${\varepsilon _{yy\max }}$—Fracture strain.
    下载: 导出CSV

    表  3  同一阶段二维平纹编织C/SiC复合材料试样DIC应变云图的变化

    Table  3.   Variation of DIC strain nephogram of 2D plain weave C/SiC composite specimen at the same stage

    Stage${\varepsilon _{yy}}$T1(${\varepsilon _{yy\max }} = 0.553\% $)T2(${\varepsilon _{yy\max }} = 0.580\% $)T3(${\varepsilon _{yy\max }} = 0.626\% $)
    (Ⅱ)

    $0.2{\varepsilon _{yy\max }}$
    $0.4{\varepsilon _{yy\max }}$
    $0.6{\varepsilon _{yy\max }}$
    (Ⅲ)

    $0.8{\varepsilon _{yy\max }}$
    $0.9{\varepsilon _{yy\max }}$
    ${\varepsilon _{yy\max }}$
    下载: 导出CSV

    表  4  二维平纹编织C/SiC复合材料试样孔隙直径的对数正态分布特征参数

    Table  4.   Lognormal distribution characteristic of pore diameter of 2D plain weave C/SiC composite specimen

    Sample$\mu $$\sigma $
    T1(Fracture) 0.1318 1.3864
    T1(Non-fracture) 0.1394 0.6603
    T2(Fracture) 0.0632 0.4356
    T2(Non-fracture) 0.0579 0.3466
    T3(Fracture) 0.0578 0.3398
    T3(Non-fracture) 0.0582 0.2414
    Note: $\mu $ and $\sigma $—Mean and variance of lognormal distribution, respectively.
    下载: 导出CSV
  • [1] 陈素芳, 谭志勇, 姜东, 等. 高温环境下纤维增强复合材料等效参数预测[J]. 振动与冲击, 2018, 37(11):216-224.

    CHEN Sufang, TAN Zhiyong, JIANG Dong, et al. Equivalent parametric prediction for fiber reinforced composites under high temperature environments[J]. Journal of Vibration and Shock,2018,37(11):216-224(in Chinese).
    [2] 张立同, 成来飞, 徐永东. 新型碳化硅陶瓷基复合材料的研究进展[J]. 航空制造技术, 2003(1):24-32. doi: 10.3969/j.issn.1671-833X.2003.01.009

    ZHANG Litong, CHENG Laifei, XU Yongdong. Research progress of new silicon carbide ceramic matrix compo-sites[J]. Aviation Manufacturing Technology,2003(1):24-32(in Chinese). doi: 10.3969/j.issn.1671-833X.2003.01.009
    [3] 管国阳, 矫桂琼, 张增光. 2D-C/SiC复合材料的宏观拉压特性和失效模式[J]. 复合材料学报, 2005(4):81-85. doi: 10.3321/j.issn:1000-3851.2005.04.014

    GUAN Guoyang, JIAO Guiqiong, ZHANG Zengguang. Macroscopic tensile and compression characteristics and failure modes of 2D-C/SiC composites[J]. Acta Materiae Compositae Sinica,2005(4):81-85(in Chinese). doi: 10.3321/j.issn:1000-3851.2005.04.014
    [4] JACOBSEN T K, BRØNDSTED P. Mechanical properties of two plain-woven chemical vapor infiltrated silicon carbide-matrix composites[J]. Journal of the American Ceramic Society, 2001, 84(5): 1043-1051.
    [5] YU G, GAO X, FANG G, et al. Strain field evolution of 2D needled C/SiC composites under tension[J]. Journal of the European Ceramic Society,2017,37(2):531-537. doi: 10.1016/j.jeurceramsoc.2016.09.030
    [6] 杨成鹏, 矫桂琼, 王波. 2D-C/SiC复合材料的单轴拉伸力学行为及其强度[J]. 力学学报, 2011, 43(2):330-337.

    YANG Chengpeng, JIAO Guiqiong, WANG Bo. Uniaxial tensile mechanical behavior and strength of 2D-C/SiC composites[J]. Chinese Journal of Theoretical and Applied Mechanics,2011,43(2):330-337(in Chinese).
    [7] LI T, DUAN Y, JIN K, et al. Dynamic compressive fracture of C/SiC composites at different temperatures: microstructure and mechanism[J]. International Journal of Impact Engineering,2017,109:391-399. doi: 10.1016/j.ijimpeng.2017.08.001
    [8] CAMUS G. Modelling of the mechanical behavior and damage processes of fibrous ceramic matrix composites: Application to a 2-D SiC/SiC[J]. International Journal of solids and Structures,2000,37(6):919-942. doi: 10.1016/S0020-7683(99)00065-7
    [9] HU W, HUANG J, ZHANG C, et al. Effect of shear strain rate on interlaminar shear behavior of 2D-C/SiC composites: A damage transition from notch ends initiation to gauge section initiation[J]. Carbon,2020,167:770-784. doi: 10.1016/j.carbon.2020.05.067
    [10] ZHANG Y, ZHANG L, YIN X, et al. Effects of porosity on in-plane and interlaminar shear strengths of two-dimensional carbon fiber reinforced silicon carbide composites[J]. Materials & Design,2016,98:120-127.
    [11] ZHANG Y, ZHANG L, LIU Y, et al. Oxidation effects on in-plane and interlaminar shear strengths of two-dimensional carbon fiber reinforced silicon carbide composites[J]. Carbon,2016,98:144-156. doi: 10.1016/j.carbon.2015.10.091
    [12] 卢广达, 陈建兵. 基于一类非局部宏-微观损伤模型的裂纹模拟[J]. 力学学报, 2020, 52(3):749-762. doi: 10.6052/0459-1879-19-319

    LU Guangda, CHEN Jianbing. Crack simulation based on a non-local macro-micro damage model[J]. Chinese Jour-nal of Theoretical and Applied Mechanics,2020,52(3):749-762(in Chinese). doi: 10.6052/0459-1879-19-319
    [13] 王勃, 张阳博, 左宏, 等. 压应力对压剪裂纹扩展的影响研究[J]. 力学学报, 2019, 51(3):845-851.

    WANG Bo, ZHANG Yangbo, ZUO Hong, et al. Study on the effect of compressive stress on the growth of compressive shear cracks[J]. Chinese Journal of Theoretical and Applied Mechanics,2019,51(3):845-851(in Chinese).
    [14] 刘海龙, 张大旭, 祁荷音, 等. 基于X射线CT原位试验的平纹SiC/SiC复合材料拉伸损伤演化[J]. 上海交通大学学报, 2020, 54(10):1074-1083.

    LIU Hailong, ZHANG Daxu, QI Heyin, et al. Tensile damage evolution of plain weave SiC/SiC composites based on In-situ X-ray CT test[J]. Journal of Shanghai Jiaotong University,2020,54(10):1074-1083(in Chinese).
    [15] 曾增, 张庆茂, 刘伟先, 等. 单向C/SiC陶瓷基复合材料基体失效机制与强度预测[J]. 复合材料学报, 2015, 32(4):1075-1082.

    ZENG Zeng, ZHANG Qingmao, LIU Weixian, et al. Matrix failure mechanism and strength prediction of unidirectional C/SiC ceramic matrix composites[J]. Acta Materiae Compositae Sinica,2015,32(4):1075-1082(in Chinese).
    [16] 曹明月, 张启, 吴建国, 等. 缝合式C/SiC复合材料非线性本构关系及断裂行为研究[J]. 力学学报, 2020, 52(4):1095-1105.

    CAO Mingyue, ZHANG Qi, WU Jianguo, et al. Nonlinear constitutive relationship and fracture behavior of stitched C/SiC composites[J]. Chinese Journal of Theoretical and Applied Mechanics,2020,52(4):1095-1105(in Chinese).
    [17] 孙轩, 王雅萍, 王博怀. 数字图像相关法变形测量系统的研究与应用[J]. 机械设计与制造, 2019(3):149-152, 157.

    SUN Xuan, WANG Yaping, WANG Bohuai. Research and application on digital image correlation deformation measurement system[J]. Machinery Design & Manufacture,2019(3):149-152, 157(in Chinese).
    [18] HE W, WANG C, WANG S, et al. Characterizing and predicting the tensile mechanical behavior and failure mechanisms of notched FMLs—Combined with DIC and numerical techniques[J]. Composite Structures,2020,254:112893. doi: 10.1016/j.compstruct.2020.112893
    [19] TABRIZI I E, KHAN R M A, MASSARWA E, et al. Determining tab material for tensile test of CFRP laminates with combined usage of digital image correlation and acoustic emission techniques[J]. Composites Part A: Applied Science and Manufacturing,2019,127:105623. doi: 10.1016/j.compositesa.2019.105623
    [20] YU G, GAO X, XIE C, et al. In-plane shear damage behaviours of 2D needled C/SiC composites[J]. Fatigue& Fracture of Engineering Materials & Structures,2019,42(2):454-465.
    [21] GAO X, YU G, XUE J, et al. Failure analysis of C/SiC composites plate with a hole by the PFA and DIC method[J]. Ceramics International,2017,43(6):5255-5266. doi: 10.1016/j.ceramint.2017.01.051
    [22] 胡殿印, 曾雨琪, 张龙, 等. 二维编织SiC/SiC陶瓷基复合材料宏观弹性常数预测及模态试验研究[J]. 推进技术, 2018, 39(2):465-472.

    HU Dianyin, ZENG Yuqi, ZHANG Long, et al. Effective elastic constants prediction and modal test of 2D braided SiC/SiC ceramic matrix composites[J]. Journal of Propulsion Technology,2018,39(2):465-472(in Chinese).
    [23] 王怀文, 亢一澜, 谢和平. 数字散斑相关方法与应用研究进展[J]. 力学进展, 2005(2):195-203.

    WANG Huaiwen, KANG Yilan, XIE Heping. Research progress of digital speckle correlation method and its application[J]. Advances in Mechanics,2005(2):195-203(in Chinese).
    [24] PAN B. Recent progress in digital image correlation[J]. Experimental Mechanics,2011,51(7):1223-1235. doi: 10.1007/s11340-010-9418-3
    [25] 史俊伟, 刘松平, 荀国立. 复合材料孔隙超声反射法和穿透法检测对比分析[J]. 航空材料学报, 2020, 40(2):89-99.

    SHI Junwei, LIU Songping, XUN Guoli. Comparative analysis of composite material pores by ultrasonic reflection method and penetration method[J]. Journal of Aeronautical Materials,2020,40(2):89-99(in Chinese).
    [26] 陆铭慧, 张雪松, 郑善朴, 等. 基于超声的碳纤维复合材料孔隙率表征方法对比研究[J]. 玻璃钢/复合材料, 2018(7):42-48.

    LU Minghui, ZHANG Xuesong, ZHENG Shanpu, et al. Comparative study on the porosity characterization methods of carbon fiber composites based on ultrasound[J]. Glass Fiber Reinforced Plastics/composites,2018(7):42-48(in Chinese).
    [27] 刘继忠, 周晓军, 蒋志峰. 碳纤维复合材料孔隙率超声衰减测试研究[J]. 材料科学与工艺, 2017(2):260-263.

    LIU Jizhong, ZHOU Xiaojun, JIANG Zhifeng. Research on ultrasonic attenuation test of porosity of carbon fiber composites[J]. Materials Science and Technology,2017(2):260-263(in Chinese).
  • 加载中
图(7) / 表(4)
计量
  • 文章访问数:  1175
  • HTML全文浏览量:  431
  • PDF下载量:  126
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-20
  • 修回日期:  2021-06-09
  • 录用日期:  2021-06-24
  • 网络出版日期:  2021-06-29
  • 刊出日期:  2022-03-23

目录

    /

    返回文章
    返回