留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

混凝土帆布与CFRP条带联合加固方形截面混凝土短柱轴心受压力学性能

相泽辉 周杰 牛建刚 许文明

相泽辉, 周杰, 牛建刚, 等. 混凝土帆布与CFRP条带联合加固方形截面混凝土短柱轴心受压力学性能[J]. 复合材料学报, 2022, 39(10): 4824-4838. doi: 10.13801/j.cnki.fhclxb.20211115.006
引用本文: 相泽辉, 周杰, 牛建刚, 等. 混凝土帆布与CFRP条带联合加固方形截面混凝土短柱轴心受压力学性能[J]. 复合材料学报, 2022, 39(10): 4824-4838. doi: 10.13801/j.cnki.fhclxb.20211115.006
XIANG Zehui, ZHOU Jie, NIU Jiangang, et al. Mechanical properties of square concrete short columns strengthened by concrete canvas and CFRP strips under axial compression[J]. Acta Materiae Compositae Sinica, 2022, 39(10): 4824-4838. doi: 10.13801/j.cnki.fhclxb.20211115.006
Citation: XIANG Zehui, ZHOU Jie, NIU Jiangang, et al. Mechanical properties of square concrete short columns strengthened by concrete canvas and CFRP strips under axial compression[J]. Acta Materiae Compositae Sinica, 2022, 39(10): 4824-4838. doi: 10.13801/j.cnki.fhclxb.20211115.006

混凝土帆布与CFRP条带联合加固方形截面混凝土短柱轴心受压力学性能

doi: 10.13801/j.cnki.fhclxb.20211115.006
基金项目: 国家自然科学基金(51968058);内蒙古自治区青年英才支持计划(NJYT-18-A06);内蒙古自治区自然科学基金(2021MS05012);内蒙古科技大学建筑科学研究所开放基金(JYSJJ-2021M16)
详细信息
    通讯作者:

    牛建刚,博士,教授,硕士生导师,研究方向为建筑结构可靠度与混凝土结构耐久性  E-mail: niujiangang@imust.edu.cn

  • 中图分类号: TU375.4

Mechanical properties of square concrete short columns strengthened by concrete canvas and CFRP strips under axial compression

  • 摘要: 通过混凝土帆布(CC)与碳纤维增强树脂复合材料(CFRP)条带联合加固混凝土方柱轴压试验,研究了纤维条带约束率、CFRP宽度与间距、层数对混凝土方柱轴压力学性能的影响,分析加固后混凝土方柱的破坏形态、承载力、耗能能力及变形能力。研究结果表明:CC的加入可以缓解角部应力集中,明显提高试件的变形能力,改善柱的破坏形态;条带宽度与间距对试件承载力和耗能能力的影响归结于纤维条带约束率,随着纤维条带约束率与CFRP层数的增加,试件的承载能力与耗能能力不断提高;当纤维条带约束率为0.5、宽度与间距为50 mm时,承载力与耗能能力最大。在试验研究的基础上,对有效约束面积变化进行理论分析,得出CC在联合加固中起到的作用,并建立联合加固混凝土方柱轴心受压承载力模型,通过误差分析可知,该模型具有较高的预测精度。

     

  • 图  1  混凝土帆布与碳纤维增强树脂复合材料(CC-CFRP)联合加固混凝土方柱试件加固类型及试件截面

    Figure  1.  Reinforcement patterns and sections of concrete square columns strengthened by concrete canvas and carbon fiber reinforced polymer (CC-CFRP)

    s—Strip width; s'—Strip spacing

    图  2  CC硬化前后效果

    Figure  2.  Effect of CC before and after hardening

    图  3  试验加载及测点布置示意图

    Figure  3.  Schematic diagram of test loading and layout of measuring points

    SG—Strain gauges

    图  4  混凝土方柱整体包裹试件破坏形态

    Figure  4.  Failure modes of whole wrapped concrete square column specimens

    图  5  条带宽度50 mm、不同条带间距的CC-CFRP联合加固混凝土方柱试件破坏形态

    Figure  5.  Failure modes of concrete square column strengthened by CC-CFRP specimens with different strip spacing of 50 mm strip width

    图  6  条带间距50 mm、不同条带宽度的CC-CFRP联合加固混凝土方柱试件破坏形态

    Figure  6.  Failure modes of concrete square column strengthened by CC-CFRP specimens with different strip width of 50 mm strip spacing

    图  7  相同纤维约束率不同条带宽度与间距的CC-CFRP联合加固混凝土方柱试件破坏形态

    Figure  7.  Failure modes of concrete square column strengthened by CC-CFRP specimens with different strip width and spacing and the same fiber restraint rate

    图  8  不同条带层数CC-CFRP联合加固混凝土方柱试件破坏形态

    Figure  8.  Failure modes of concrete square column strengthened by CC-CFRP specimens with different strip layers

    图  9  CC-CFRP联合加固混凝土方柱轴向荷载-位移曲线

    Figure  9.  Curves of axial load versus displacement of concrete square column strengthened by CC-CFRP

    图  10  纤维条带层数对CC-CFRP联合加固混凝土方柱承载力与极限应变的影响

    Figure  10.  Influence of the number of fiber strips on the bearing capacity and deformation capacity of concrete square column strengthened by CC-CFRP

    图  11  文献[27]与欧洲规范模型计算CC-CFRP联合加固混凝土方柱轴心受压承载力模型误差分析

    Figure  11.  Error analysis of model in reference [27] and European standard for bearing capacity calculation of concrete square column strengthened by CC-CFRP under axial compression

    图  12  不同加固方式混凝土方柱纵向有效约束区

    Figure  12.  Longitudinal effective area of concrete square column with different reinforcement methods

    Ae1—Effective constraint area; b—Width of core concrete

    图  13  不同加固方式混凝土方柱横向有效约束区

    Figure  13.  Lateral effective area of concrete square column with different reinforcement methods

    图  14  CFRP受力简图

    Figure  14.  Force diagram of CFRP

    ff—Tensile strength of CFRP; f1—Confining stress

    图  15  CC-CFRP条带联合加固混凝土方柱有效约束区强度比与约束比的关系

    Figure  15.  Relationship between the strength ratio of the effective restraint zone and the constraint ratio of concrete square column strengthened by CC-CFRP

    图  16  CC-CFRP条带联合加固混凝土方柱承载力计算公式误差分析

    Figure  16.  Error analysis of calculation formula of bearing capacity of concrete square column strengthened by CC-CFRP

    表  1  试件主要参数

    Table  1.   Main parameters of specimens

    NumberStrip width/mmStrip spacing/mmRestraint rate of the fiber stripsNumber of CFRP layers
    SC 0 0 0 0
    CFRP(N3-W450-S0)-SC 450 0 1.00 3
    CC-CFRP(N3-W450-S0)-SC 450 0 1.00 3
    CC-CFRP(N3-W50-S100)-SC 50 100 0.33 3
    CC-CFRP(N3-W50-S75)-SC 50 75 0.40 3
    CC-CFRP(N3-W50-S50)-SC 50 50 0.50 3
    CC-CFRP(N3-W75-S50)-SC 75 50 0.60 3
    CC-CFRP(N3-W50-S30)-SC 50 30 0.625 3
    CC-CFRP(N3-W100-S50)-SC 100 50 0.67 3
    CC-CFRP(N3-W150-S50)-SC 150 50 0.75 3
    CC-CFRP(N3-W30-S30)-SC 30 30 0.50 3
    CC-CFRP(N3-W75-S75)-SC 75 75 0.50 3
    CC-CFRP(N3-W90-S90)-SC 90 90 0.50 3
    CC-CFRP(N1-W100-S50)-SC 100 50 0.67 1
    CC-CFRP(N2-W100-S50)-SC 100 50 0.67 2
    CC-CFRP(N1-W150-S50)-SC 150 50 0.75 1
    CC-CFRP(N2-W150-S50)-SC 150 50 0.75 2
    Notes: SC—Square column; First letter and number in parentheses—Number of CFRP layers; Second letter and number—Width of CFRP; Third letter and number—Spacing of CFRP. For example, CC-CFRP(N3-W50-S100)-SC—Strip width of concrete square columns strengthened by CC and CFRP is 50 mm, the spacing is 100 mm, and the number of CFRP is 3.
    下载: 导出CSV

    表  2  CFRP布力学性能参数

    Table  2.   Mechanical properties of CFRP

    Modelt/mmfu/MPaE/MPaεcu/%
    CFS-I-3000.16735482.33×1051.62
    Notes: t—Thickness of CFRP; fu—Tensile strength of CFRP; E— Elastic modulus of CFRP; εcu—Tensile elongation of CFRP at break.
    下载: 导出CSV

    表  3  CC力学性能参数

    Table  3.   Mechanical properties of CC

    Type of CCfc/MPaft/MPaρ/(kg·m−3)
    Sulphoaluminate concrete canvas30.102.771250
    Notes: fc—Compressive strength of CC; ft—Tensile strength of CC; ρ—Bulk density of CC.
    下载: 导出CSV

    表  4  各组混凝土方柱试件实验结果

    Table  4.   Test results of concrete square column specimens

    NumberkfNu/kNNu,m/kN$ f{'_{{\text{cc}}}} $/
    MPa
    $ f{'_{{\text{cc,m}}}} $
    /
    MPa
    $ \dfrac{{f{'_{{\text{cc,m}}}}}}{{f{'_{{\text{co,m}}}}}} $$ {\varepsilon _{{\text{cc}}}} $/10−3$ {\varepsilon _{{\text{cc,m}}}} $/
    10−3
    $ \dfrac{{{\varepsilon _{{\text{cc,m}}}}}}{{{\varepsilon _{{\text{co,m}}}}}} $EP/(kN·mm)EP,m/
    (kN·mm)
    SC1 0.00 546.51 588.48 24.29 26.15 1.00 2.24 2.27 1.00 751.39 837.12
    SC2 630.45 28.02 2.30 922.85
    CFRP(N3-W450-S0)-SC1 1.00 1236.46 1250.00 54.95 55.56 2.12 12.08 11.67 5.14 27742.55 25913.95
    CFRP(N3-W450-S0)-SC2 1263.54 56.16 11.26 24085.35
    CC-CFRP(N3-W450-S0)-SC1 1.00 1761.01 1766.97 78.27 78.53 3.00 25.63 26.36 11.61 54182.75 57328.26
    CC-CFRP(N3-W450-S0)-SC2 1772.93 78.80 27.09 60473.76
    CC-CFRP(N3-W50-S100)-SC1 0.33 751.26 768.54 33.39 34.16 1.31 16.69 16.87 7.43 19748.52 21124.90
    CC-CFRP(N3-W50-S100)-SC2 785.82 34.93 17.05 22501.28
    CC-CFRP(N3-W50-S75)-SC1 0.40 824.21 849.92 36.63 37.77 1.44 12.94 12.87 5.66 21949.59 21900.44
    CC-CFRP(N3-W50-S75)-SC2 875.63 38.92 12.80 21851.29
    CC-CFRP(N3-W50-S50)-SC1 0.50 900.07 935.05 40.00 41.74 1.60 12.08 12.16 5.35 21639.50 23133.31
    CC-CFRP(N3-W50-S50)-SC2 970.03 43.11 12.24 24627.11
    CC-CFRP(N3-W75-S50)-SC1 0.60 991.58 1013.58 44.07 45.05 1.72 12.49 12.45 5.48 24302.41 24293.83
    CC-CFRP(N3-W75-S50)-SC2 1035.58 46.03 12.41 24285.25
    CC-CFRP(N3-W50-S30)-SC1 0.62 988.09 1028.60 43.92 45.72 1.75 15.68 15.32 6.74 28081.90 27915.97
    CC-CFRP(N3-W50-S30)-SC2 1069.11 47.52 14.96 27750.04
    CC-CFRP(N3-W100-S50)-SC1 0.67 1132.30 1164.27 50.32 51.75 1.98 13.99 14.31 6.30 28452.54 29344.17
    CC-CFRP(N3-W100-S50)-SC2 1196.24 53.17 14.61 30235.79
    CC-CFRP(N3-W150-S50)-SC1 0.75 1273.82 1303.78 56.61 57.95 2.22 13.72 13.81 6.08 30020.55 30327.93
    CC-CFRP(N3-W150-S50)-SC2 1333.74 59.28 13.90 30635.30
    CC-CFRP(N3-W30-S30)-SC1 0.50 835.77 853.99 37.15 37.96 1.45 13.02 12.50 5.51 19276.97 18605.32
    CC-CFRP(N3-W30-S30)-SC2 872.21 38.76 11.98 17933.67
    CC-CFRP(N3-W75-S75)-SC1 0.50 871.83 876.74 38.75 38.97 1.49 13.56 13.70 6.04 21794.27 22218.48
    CC-CFRP(N3-W75-S75)-SC2 881.65 39.18 13.84 22642.69
    CC-CFRP(N3-W90-S90)-SC1 0.50 787.42 808.83 35.00 35.95 1.37 12.67 12.59 5.55 17377.05 17003.90
    CC-CFRP(N3-W90-S90)-SC2 830.24 36.90 12.51 16630.75
    CC-CFRP(N1-W100-S50)-SC1 0.67 880.34 902.30 39.13 40.10 1.53 10.42 9.88 4.35 17467.47 15920.07
    CC-CFRP(N1-W100-S50)-SC2 924.26 41.08 9.34 14372.67
    CC-CFRP(N2-W100-S50)-SC1 0.67 948.76 964.87 42.17 42.88 1.64 11.65 11.01 4.85 20375.14 17920.45
    CC-CFRP(N2-W100-S50)-SC2 980.98 43.60 10.37 15465.76
    CC-CFRP(N1-W150-S50)-SC1 0.75 865.43 872.55 38.46 38.78 1.48 15.12 14.59 6.53 24092.08 23705.29
    CC-CFRP(N1-W150-S50)-SC2 879.67 39.10 14.06 23318.50
    CC-CFRP(N2-W150-S50)-SC1 0.75 1037.97 1059.67 46.13 47.10 1.80 13.79 13.49 5.94 27598.94 27131.26
    CC-CFRP(N2-W150-S50)-SC2 1081.37 48.06 13.19 26663.58
    Notes: kf—Fiber strip restraint rate; Nu—Peak load of each group of specimens; Nu,m—Average peak load of each group of specimens; f 'cc—Peak stress of each group of specimens; f 'cc,m—Average peak stress of each group of specimens; f 'co —Peak stress corresponding to the SC group of specimens; f 'co,m—Average peak stress corresponding to the SC group of specimens; εcc—Strain corresponding to f 'cc of each group of specimens; εcc,m—Average strain corresponding to f 'cc of each group of specimens; εco—Strain corresponding to f 'co of SC group of specimens; εco,m—Average strain corresponding to f 'co of SC group specimens; EP—Energy dissipation capacity; EP,m—Average energy dissipation capacity.
    下载: 导出CSV
  • [1] 张鑫, 李安起, 赵考重. 建筑结构鉴定与加固改造技术的进展[J]. 工程力学, 2011, 28(1):1-11, 25.

    ZHANG Xin, LI Anqi, ZHAO Kaozhong. Advances in assessment and retrofitting of building structures[J]. Engineering Mechanics,2011,28(1):1-11, 25(in Chinese).
    [2] 龚建伍. 建筑物变形监测及安全评价方法研究[D]. 武汉: 武汉大学, 2004.

    GONG Jianwu. Study on building deformation monitoring and safety evaluation method[D]. Wuhan: Wuhan University, 2004(in Chinese).
    [3] 牛建刚, 刘威亨. 酸雨侵蚀混凝土研究进展[J]. 灾害学, 2020, 35(4):147-150, 168. doi: 10.3969/j.issn.1000-811X.2020.04.027

    NIU Jiangang, LIU Weiheng. Research progress on acid rain erosion of concrete[J]. Journal of Catastrophology,2020,35(4):147-150, 168(in Chinese). doi: 10.3969/j.issn.1000-811X.2020.04.027
    [4] 叶列平, 冯鹏. FRP在工程结构中的应用与发展[J]. 土木工程学报, 2006, 39(3):24-36. doi: 10.3321/j.issn:1000-131X.2006.03.004

    YE Lieping, FENG Peng. Application and development of fiber-reinforced polymer in engineering structures[J]. China Civil Engineering Journal,2006,39(3):24-36(in Chinese). doi: 10.3321/j.issn:1000-131X.2006.03.004
    [5] 薛伟辰, 李杰. 碳纤维材料在加固工程中的应用研究[J]. 四川建筑科学研究, 2001, 27(4):28-30. doi: 10.3969/j.issn.1008-1933.2001.04.009

    XUE Weichen, LI Jie. Studies on applications of CFRP in strengthening structures[J]. Sichuan Building Science,2001,27(4):28-30(in Chinese). doi: 10.3969/j.issn.1008-1933.2001.04.009
    [6] 李趁趁, 于爱民, 高丹盈, 等. 侵蚀环境下FRP条带加固锈蚀钢筋混凝土圆柱轴心受压试验[J]. 复合材料学报, 2020, 37(8):2015-2028. doi: 10.13801/j.cnki.fhclxb.20200212.005

    LI Chenchen, YU Aimin, GAO Danying, et al. Experimental study on axial compression of corroded reinforced concrete columns strengthened with FRP strips under erosion environment[J]. Acta Materiae Compositae Sinica,2020,37(8):2015-2028(in Chinese). doi: 10.13801/j.cnki.fhclxb.20200212.005
    [7] TENG J G, LAM L. Behavior and modeling of fiber reinforced polymer-confined concrete[J]. Journal of Structural Engineering,2004,130(11):1713-1723. doi: 10.1061/(ASCE)0733-9445(2004)130:11(1713)
    [8] 刘涛. 碳纤维(CFRP)布加固混凝土矩形柱的性能研究[D]. 上海: 上海大学, 2006.

    LIU Tao. Research on the behavior of rectangular concrete columns strengthened with CFRP sheets[D]. Shanghai: Shanghai University, 2006(in Chinese).
    [9] 岳清瑞, 杨勇新. 纤维增强复合材料加固结构耐久性研究综述[J]. 建筑结构学报, 2009, 30(6):8-15. doi: 10.14006/j.jzjgxb.2009.06.002

    YUE Qingrui, YANG Yongxin. Introduction to durability of concrete strengthened with fiber reinforced polymers[J]. Journal of Building Structures,2009,30(6):8-15(in Chinese). doi: 10.14006/j.jzjgxb.2009.06.002
    [10] KAFODYA I, XIAN G J, LI H. Durability study of pultruded CFRP plates immersed in water and seawater under sustained bending: Water uptake and effects on the mechanical properties[J]. Composites Part B: Engineering,2015,70:138-148. doi: 10.1016/j.compositesb.2014.10.034
    [11] 张磊. 带角部增强的CFRP约束混凝土方柱抗压性能试验研究[D]. 长沙: 湖南大学, 2015.

    ZHANG Lei. Compressive performance study of square concrete columns confined by CFRP with corner reinforced[D]. Changsha: Hunan University, 2015(in Chinese).
    [12] 杨俊龙, 王吉忠, 卢世伟, 等. FRP非均匀约束海水海砂混凝土方柱轴压性能[J]. 复合材料学报, 2022, 39(6):2801-2809. doi: 10.13801/j.cnki.fhclxb.20210708.004

    YANG Junlong, WANG Jizhong, LU Shiwei, et al. Axial compressive behavior of FRP nonuniformly wrapped seawater sea-sand concrete in square columns[J]. Acta Materiae Compositae Sinica,2022,39(6):2801-2809(in Chinese). doi: 10.13801/j.cnki.fhclxb.20210708.004
    [13] 胡忠君, 宋雪娇. CFRP布条带约束混凝土圆柱承载力计算方法研究[J]. 混凝土, 2016(11):46-48. doi: 10.3969/j.issn.1002-3550.2016.11.013

    HU Zhongjun, SONG Xuejiao. Study on the calculation method of circle concrete column wrapped with CFRP cloth straps[J]. Concrete,2016(11):46-48(in Chinese). doi: 10.3969/j.issn.1002-3550.2016.11.013
    [14] HAN F Y, CHEN H S, LI X Y, et al. Improvement of mechanical properties of concrete canvas by anhydrite-modified calcium sulfoaluminate cement[J]. Journal of Composite Materials,2016,50(14):1937-1950. doi: 10.1177/0021998315597743
    [15] LI H, CHEN H S, LI X Y, et al. Design and construction application of concrete canvas for slope protection[J]. Powder Technology,2019,344:937-946. doi: 10.1016/j.powtec.2018.12.075
    [16] 胡伟勋. 工业SO2环境混凝土帆布力学性能及耐久性能试验研究[D]. 包头: 内蒙古科技大学, 2016.

    HU Weixun. Experimental study on mechanical properties and durability of concrete canvas in the environment with industrial sulfur dioxide[D]. Baotou: Inner Mongolia University of Science and Technology, 2016(in Chinese).
    [17] 曹鹏. 混凝土帆布的力学性能及其复合管研究[D]. 苏州: 苏州科技大学, 2016.

    CAO Peng. Study on mechanical properties and composite tube of concrete canvas[D]. Suzhou: Suzhou University of Science and Technology, 2016(in Chinese).
    [18] 张方圆. 混凝土帆布配合比优化、FRP增强及抗侵彻性能研究[D]. 南京: 东南大学, 2016.

    ZHANG Fangyuan. Mixture proportion optimization, FRP reinforcement and ballistic performance of concrete canvas[D]. Nanjing: Southeast University, 2016(in Chinese).
    [19] NIU J G, XU W M, LI J J, et al. Influence of cross-sectional shape on the mechanical properties of concrete canvas and CFRP-reinforced columns[J]. Advance in Materials Science and Engineering,2021,2021(30):1-14. doi: 10.1155/2021/5541587
    [20] 相泽辉, 牛建刚, 王梦雨, 等. 混凝土帆布和碳纤维布联合约束圆形截面混凝土短柱轴压性能研究[J]. 建筑结构学报, 2020, 41(S1):154-161. doi: 10.14006/j.jzjgxb.2020.S1.017

    XIANG Zehui, NIU Jian'gang, WANG Mengyu, et al. Experience study on axial behavior of RC circular columns confined with CC and CFRP[J]. Journal of Building Structures,2020,41(S1):154-161(in Chinese). doi: 10.14006/j.jzjgxb.2020.S1.017
    [21] 牛建刚, 栾瑞林, 刘晓. 混凝土帆布与CFRP加固钢筋混凝土方柱受力性能试验研究[J]. 建筑结构学报, 2018, 39(S2):169-175. doi: 10.14006/j.jzjgxb.2018.S2.023

    NIU Jian'gang, LUAN Ruilin, LIU Xiao. Experimental study on mechanical properties of reinforced concrete square columns strengthened with CFRP[J]. Journal of Building Structures,2018,39(S2):169-175(in Chinese). doi: 10.14006/j.jzjgxb.2018.S2.023
    [22] ACI Committee 440. Guide for the design and construction of externally bonded FRP systems for strengthening concrete structures: ACI 440. 2R—08[S]. Farmington Hills: American Concrete Institute, 2008.
    [23] 中华人民共和国住房与城乡建设部. 建筑砂浆基本性能试验方法标准: JGJ/T 70—2009 [S]. 北京: 中国建筑工业出版社, 2009.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Standard for test method of performance on building mortar: JGJ/T 70—2009[S]. Beijing: China Architecture & Building Press, 2009(in Chinese).
    [24] ZHANG F Y, CHEN H S, LI X Y, et al. Experimental study of the mechanical behavior of FRP-reinforced concrete canvas panels[J]. Composite Structures,2017,176:608-616. doi: 10.1016/j.compstruct.2017.05.072
    [25] 中华人民共和国住房与城乡建设部. 混凝土结构试验方法标准: GB/T 50152—2012[S]. 北京: 中国建筑工业出版社, 2012.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Standard for test method of concrete structures: GB/T 50152—2012[S]. Beijing: China Architecture & Building Press, 2012(in Chinese).
    [26] NISTICO N, PALLINI F, ROUSAKIS T, et al. Peak strength and ultimate strain prediction for FRP confined square and circular concrete sections[J]. Composites Part B: Engineering,2014,67:543-554. doi: 10.1016/j.compositesb.2014.07.026
    [27] 彭亚萍, 刘增夕, 马明. 条带式FRP约束混凝土方柱的轴 压承载力分析[J]. 武汉理工大学学报, 2010, 32(3):24-28.

    PENG Yaping, LIU Zengxi, MA Ming. Analysis of axial compressive bearing capacity of square concrete column confined with striped FRP[J]. Journal of Wuhan University of Technology,2010,32(3):24-28(in Chinese).
    [28] TRIANTAFILLOU T, MATTHYS S, AUDENAERT K, et al. Externally bonded FRP reinforcement for RC structures[M]. Lausanne: International Federation for Structural Concrete (Fib), 2001.
    [29] 卢亦焱, 史健勇, 赵国藩. 碳纤维布约束轴心受压混凝土方形柱承载力计算研究[J]. 工程力学, 2004, 21(4):22-27. doi: 10.3969/j.issn.1000-4750.2004.04.005

    LU Yiyan, SHI Jianyong, ZHAO Guofan. Experimental research on concrete columns strengthened with the combination of CFRP and angle steel[J]. Engineering Mechanics,2004,21(4):22-27(in Chinese). doi: 10.3969/j.issn.1000-4750.2004.04.005
    [30] 李伟政. 二轴拉压应力全组合下混凝土强度及变形试验研究[D]. 北京: 清华大学, 1989.

    LI Weizheng. Experimental research on concrete strength and deformation under full combination of biaxial tension and compression stress[D]. Beijing: Tsinghua University, 1989(in Chinese).
    [31] TENG J G, HU Y M, YU T. Stress-strain model for concrete in FRP-confined steel tubular columns[J]. Engineering Structure,2013,49(2):156-167. doi: 10.1016/j.engstruct.2012.11.001
    [32] HUANG L, GAO C, YAN L B, et al. Reliability assessment of confinement models of carbon fiber reinforced polymer-confined concrete[J]. Journal of Reinforced Plastics & Composites,2016,35(12):996-1026. doi: 10.1177/0731684416633899
    [33] TOUTANJI H A. Stress-strain characteristics of concrete columns externally confined with advanced fiber composite sheets[J]. ACI Structural Journal,1999,96(3):397-404.
  • 加载中
图(16) / 表(4)
计量
  • 文章访问数:  1131
  • HTML全文浏览量:  487
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-07
  • 修回日期:  2021-10-26
  • 录用日期:  2021-11-06
  • 网络出版日期:  2021-11-16
  • 刊出日期:  2022-08-22

目录

    /

    返回文章
    返回