留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

新型FRP-UHPC组合筋的横向剪切性能

叶玉仪 周捷凯 曾俊杰

叶玉仪, 周捷凯, 曾俊杰. 新型FRP-UHPC组合筋的横向剪切性能[J]. 复合材料学报, 2022, 39(11): 5333-5342. doi: 10.13801/j.cnki.fhclxb.20220902.001
引用本文: 叶玉仪, 周捷凯, 曾俊杰. 新型FRP-UHPC组合筋的横向剪切性能[J]. 复合材料学报, 2022, 39(11): 5333-5342. doi: 10.13801/j.cnki.fhclxb.20220902.001
YE Yuyi, ZHOU Jiekai, ZENG Junjie. Transverse shear behaviour of novel FRP-UHPC hybrid bars[J]. Acta Materiae Compositae Sinica, 2022, 39(11): 5333-5342. doi: 10.13801/j.cnki.fhclxb.20220902.001
Citation: YE Yuyi, ZHOU Jiekai, ZENG Junjie. Transverse shear behaviour of novel FRP-UHPC hybrid bars[J]. Acta Materiae Compositae Sinica, 2022, 39(11): 5333-5342. doi: 10.13801/j.cnki.fhclxb.20220902.001

新型FRP-UHPC组合筋的横向剪切性能

doi: 10.13801/j.cnki.fhclxb.20220902.001
基金项目: 国家自然科学基金(52178277;52008116);广东省杰出青年基金(2021 B1515020029)
详细信息
    通讯作者:

    曾俊杰,博士,副教授,博士生导师,研究方向为新型材料与新型结构 E-mail: jjzeng@gdut.edu.cn

  • 中图分类号: TB332

Transverse shear behaviour of novel FRP-UHPC hybrid bars

Funds: National Natural Science Foundation of China (52178277);Guangdong Natural Science Funds for Distinguished Young Scholar (2021 B1515020029)
  • 摘要: 纤维增强树脂复合材料(FRP)-超高性能混凝土(UHPC)组合筋是一种新型无钢组合筋(简称“组合筋”),由外FRP管、中心FRP筋及两者之间填充的UHPC组成。该组合筋解决了 FRP筋受压易屈曲问题,同时因其不含钢材等易腐蚀成分而具有良好的耐久性。因其亦具有较好剪切性能,本文对组合筋的横向剪切性能进行了试验研究,关键变量为外FRP管纤维缠绕角,对照试件为FRP管约束UHPC试件和FRP裸筋。研究结果表明,在横向剪切荷载作用下,组合筋的两个峰值荷载均比对照试件的峰值荷载大58%以上,变形能力比FRP管约束UHPC对照试件的变形能力大220%以上,因此组合筋各组分之间良好的协同工作使其具有良好的抗剪性能。最后,提出了一种组合筋剪切强度的计算方法,并用试验结果验证了该方法的准确性。

     

  • 图  1  组合筋的结构概念图

    UHPC—Ultra-high performance concrete; FRP—Fibre-reinforced polymer

    Figure  1.  Concept and structure compositions of hybrid bars

    图  2  各种筋材的典型应力-应变关系

    GFRP—Glass fiber reinforced polymer

    Figure  2.  Typical stress-strain responses of bars with different materials

    图  3  新型FRP-UHPC组合筋模具安装和辅助工具

    Figure  3.  Mold installation of novel FRP-UHPC hybrid bars and auxiliary tools

    图  4  FRP小管环向应力-应变曲线

    Figure  4.  Hoop stress-strain curves of small FRP tubes

    图  5  FRP筋应力-应变曲线

    Figure  5.  Stress-strain curves of FRP bars

    图  6  组合筋和FRP管约束UHPC试件轴向应力-应变曲线

    Figure  6.  Axial stress-strain curves of hybrid bars and UHPC-filled FRP tubes

    图  7  新型FRP-UHPC组合筋的典型平均轴向应力-轴向应变曲线

    Figure  7.  Typical average axial stress-axial strain curve of novel FRP-UHPC hybrid bars

    图  8  横向剪切试验装置

    Figure  8.  Transverse shear test set-up

    图  9  各试件的破坏模式

    Figure  9.  Typical failure modes of specimens

    图  10  各试件横向剪切荷载-位移曲线

    Figure  10.  Load-displacement curves of specimens under transverse shear tests

    图  11  组合筋和FRP 管约束UHPC试件横向抗剪强度

    Figure  11.  Transverse shear strength of hybrid bars and UHPC-filled FRP tubes

    图  12  试件横向抗剪强度预测值与试验值

    M—Mean; AAE—Average absolute error; SD—Standard deviation

    Figure  12.  Transverse shear strength of specimens: Experimental results versus predicted results

    表  1  试件的详细参数

    Table  1.   Details of specimens

    TypeSpecimenFRP thickness/mmFibre winding angle/(°)Diameter of the central FRP bar/mm
    Hybrid barHB-45-1/2/3/42.904525
    HB-60-1/2/3/42.256025
    HB-80-1/2/3/41.818025
    UHPC-filled FRP tubeFU-45-1/2/3/42.9045
    FU-60-1/2/3/42.2560
    FU-80-1/2/3/41.8180
    FRP barFB-1/2/3/4/525
    下载: 导出CSV

    表  2  UHPC的配合比

    Table  2.   UHPC mix proportions wt%

    CementQuartz
    powder
    Silica
    fume
    SandWaterSuper-
    plasticizer
    1.000.370.251.100.190.04
    下载: 导出CSV

    表  3  FRP小管轴压试验结果

    Table  3.   Compressive properties of small FRP tubes

    Fiber winding
    angle/(°)
    Compressive
    strength/MPa
    Peak
    strain
    Secant elastic
    modulus/GPa
    Poison’s
    ratio
    ±4593.690.01894.980.85
    ±6098.860.01994.980.34
    ±8086.350.01306.740.14
    下载: 导出CSV

    表  4  FRP筋的拉伸和受压性能

    Table  4.   Tensile and compressive properties of FRP bars

    Nominal diameter/mmTensile elastic modulus/GPaTensile strength/MPaUltimate tensile
    strain
    Compressive elastic modulus/GPaCompressive strength/MPaUltimate compressive
    strain
    2541.0711.60.017240.6274.50.0077
    下载: 导出CSV

    表  5  各试件横向剪切试验的主要结果

    Table  5.   Key results of specimens under transverse shear tests

    TypeSpecimenFirst transverse shear strength $ {\tau }_{\mathrm{u}1} $/MPaMean/MPaStandard deviation/MPaSecond transverse
    shear strength
    $ {\tau }_{\mathrm{u}2} $/MPa
    Mean/MPaStandard deviation/MPa
    Hybrid bar HB-45-1 70.1 66.7
    HB-45-2 69.0 68.3 2.32 60.1 64.5 3.09
    HB-45-3 64.9 66.6
    HB-45-4 69.2
    HB-60-1 58.3 60.1 3.91 67.5 65.6 1.29
    HB-60-2 56.1 65.0
    HB-60-3 60.9 64.6
    HB-60-4 65.2
    HB-80-1 51.2 50.1 1.58 67.6 66.3 1.38
    HB-80-2 51.3 66.1
    HB-80-3 47.9 64.4
    HB-80-4 50.0
    UHPC-filled
    FRP tube
    FU-45-1 42.6 44.1 2.60
    FU-45-2 41.6
    FU-45-3 47.5
    FU-45-4 44.6
    FU-60-1 27.9 30.1 1.52
    FU-60-2 30.9
    FU-60-3 30.8
    FU-60-4 31.0
    FU-80-1 17.3 19.1 2.69
    FU-80-2 22.7
    FU-80-3 19.7
    FU-80-4 16.8
    FRP bar FB-1 165.7 160.7 6.97
    FB-2 155.8
    FB-3 161.9
    FB-4 168.5
    FB-5 151.6
    下载: 导出CSV

    表  6  FRP管的剪切模量和抗剪强度

    Table  6.   Shear modulus and shear strength of FRP tubes

    Fiber winding angle/(°)Transverse shear strength $ {\tau }_{\mathrm{u}} $/MPaShear modulus $ {G}_{xy} $/GPa
    ±45148.4011.26
    ±6055.744.23
    ±8018.551.41
    下载: 导出CSV
  • [1] 叶列平, 冯鹏. FRP在工程结构中的应用与发展[J]. 土木工程学报, 2006, 39(3):34-36. doi: 10.3321/j.issn:1000-131X.2006.03.004

    YE Lieping, FENG Peng. Applications and development of fiber-reinforced polymer in engineering structures[J]. China Civil Engineering Journal,2006,39(3):34-36(in Chinese). doi: 10.3321/j.issn:1000-131X.2006.03.004
    [2] 李荣, 滕锦光, 岳清瑞. FRP材料加固混凝土结构应用的新领域—嵌入式(NSM)加固法[J]. 工业建筑, 2004, 34(4):5-10. doi: 10.3321/j.issn:1000-8993.2004.04.002

    LI Rong, TENG Jinguang, YUE Qingrui. Experimental study on bond behavior of NSM CFRP strips-concrete interface[J]. Industrial Construction,2004,34(4):5-10(in Chinese). doi: 10.3321/j.issn:1000-8993.2004.04.002
    [3] 吴刚, 吕志涛. 纤维增强复合材料(FRP)约束混凝土矩形柱应力-应变关系的研究[J]. 建筑结构学报, 2004, 25(3):99-106. doi: 10.3321/j.issn:1000-6869.2004.03.016

    WU Gang, LV Zhitao. Study on the stress-strain relationship of FRP-confined concrete rectangular columns[J]. Journal of Building Structures,2004,25(3):99-106(in Chinese). doi: 10.3321/j.issn:1000-6869.2004.03.016
    [4] 滕锦光. 新材料组合结构[J]. 土木工程学报, 2018, 51(12):1-11. doi: 10.15951/j.tmgcxb.2018.12.001

    TENG Jinguang. New-material hybrid structures[J]. China Civil Engineering Journal,2018,51(12):1-11(in Chinese). doi: 10.15951/j.tmgcxb.2018.12.001
    [5] 赵辉, 曹玉贵, 王攀峰, 等. 不同应变速率下CFRP约束混凝土方柱的力学性能[J]. 复合材料学报, 2022, 39(10): 4847-4855.

    ZHAO Hui, CAO Yugui, WANG Panfeng, et al. Mechanical behavior of CFRP confined concrete square column under different strain rates[J]. Acta Materiae Compositae Sinica, 2022, 39(10): 4847-4855(in Chinese).
    [6] 欧阳利军, 许峰, 高皖扬, 等. 玄武岩纤维布约束高温损伤混凝土方柱轴压力学性能试验[J]. 复合材料学报, 2019, 36(2):469-481. doi: 10.13801/j.cnki.fhclxb.20180611.001

    OUYANG Lijun, XU Feng, GAO Wanyang, et al. Axial compressive behavior of post heated square concrete columns wrapped by BFRP sheets: An experimental investigation[J]. Acta Materiae Compositae Sinica,2019,36(2):469-481(in Chinese). doi: 10.13801/j.cnki.fhclxb.20180611.001
    [7] 朱海堂, 程晟钊, 高丹盈, 等. BFRP筋钢纤维高强混凝土梁受弯承载力试验与理论[J]. 复合材料学报, 2018, 35(12):3313-3323. doi: 10.13801/j.cnki.fhclxb.20180319.004

    ZHU Haitang, CHENG Shengzhao, GAO Danying, et al. Experimental and theoretical study on the flexural capacity of high strength concrete beams reinforced with BFRP bars and steel fiber[J]. Acta Materiae Compositae Sinica,2018,35(12):3313-3323(in Chinese). doi: 10.13801/j.cnki.fhclxb.20180319.004
    [8] 李小伟, 曹旗. FRP配筋海水珊瑚骨料混凝土材料及构件力学性能研究进展[J]. 复合材料学报, 2022, 39(3):926-941. doi: 10.13801/j.cnki.fhclxb.20210902.004

    LI Xiaowei, CAO Qi. Research progress on mechanical properties of FRP reinforced seawater coral aggregate concrete materials and structural components[J]. Acta Materiae Compositae Sinica,2022,39(3):926-941(in Chinese). doi: 10.13801/j.cnki.fhclxb.20210902.004
    [9] ZADEH H J, NANNI A. Design of RC columns using glass FRP reinforcement[J]. Journal of Composites for Construction,2013,17(3):294-304. doi: 10.1061/(ASCE)CC.1943-5614.0000354
    [10] DE LUCA A, MATTA F, NANNI A. Behavior of full-scale glass fiber-reinforced polymer reinforced concrete columns under axial load[J]. ACI Structural Journal,2010,107(5):589-596.
    [11] TOBBI H, FARGHALY A S, BENMOKRANE B. Concrete columns reinforced longitudinally and transversally with glass fiber-reinforced polymer bars[J]. ACI Structural Journal,2012,109(4):551-558.
    [12] ALI M A, EL-SALAKAWY E. Seismic performance of GFRP-reinforced concrete rectangular columns[J]. Journal of Composites for Construction,2016,20(3):04015074. doi: 10.1061/(ASCE)CC.1943-5614.0000637
    [13] HADI M N S, HASAN H A, SHEIKH M N. Experimental investigation of circular high-strength concrete columns reinforced with glass fiber-reinforced polymer bars and helices under different loading conditions[J]. Journal of Composites for Construction,2017,21(4):04017005. doi: 10.1061/(ASCE)CC.1943-5614.0000784
    [14] American Concrete Institute. Guide for the design and construction of concrete reinforced with FRP bars: ACI 440.1 R-15[S]. Farmington Hill: American Concrete Institute, 2015.
    [15] Canadian Standards Association. Design and construction of building components with fiber-reinforced polymers: CSA S806-12 (R2017)[S]. Ontario: Canadian Standards Association, 2017.
    [16] EL-SAYED A, EL-SALAKAWY E, BENMOKRANE B. Shear strength of FRP-reinforced concrete beams without transverse reinforcement[J]. ACI Structural Journal,2006,103(2):235-243.
    [17] GAO D Y, ZHANG C H. Shear strength calculating model of FRP bar reinforced concrete beams without stirrups[J]. Engineering Structures,2020,221:111025. doi: 10.1016/j.engstruct.2020.111025
    [18] TENG J G, ZHANG B, ZHANG S, et al. Steel-free hybrid reinforcing bars for concrete structures[J]. Advances in Structural Engineering,2018,21(16):2617-2621. doi: 10.1177/1369433218818772
    [19] ZENG J J, YE Y Y, QUACH W M, et al. Compressive and transverse shear behaviour of novel FRP-UHPC hybrid bars[J]. Composite Structures,2022,281:115001. doi: 10.1016/j.compstruct.2021.115001
    [20] SHI C, WU Z, XIAO J, et al. A review on ultra high performance concrete: Part I. Raw materials and mixture design[J]. Construction and Building Materials,2015,101:741-751. doi: 10.1016/j.conbuildmat.2015.10.088
    [21] WILLE K, BOISVERT-COTULIO C. Material efficiency in the design of ultra-high performance concrete[J]. Construction and Building Materials,2015,86:33-43. doi: 10.1016/j.conbuildmat.2015.03.087
    [22] LI J, WU Z, SHI C, et al. Durability of ultra-high performance concrete-A review[J]. Construction and Building Materials,2020,255:119296. doi: 10.1016/j.conbuildmat.2020.119296
    [23] TENG J G, XIANG Y, YU T, et al. Development and mecha-nical behaviour of ultra-high-performance seawater sea-sand concrete[J]. Advances in Structural Engineering,2019,22(14):3100-3120. doi: 10.1177/1369433219858291
    [24] TIAN H, ZHOU Z, WEI Y, et al. Experimental investigation on axial compressive behavior of ultra-high performance concrete (UHPC) filled glass FRP tubes[J]. Construction and Building Materials,2019,225:678-691. doi: 10.1016/j.conbuildmat.2019.07.204
    [25] ZOHREVAND P, MIRMIRAN A. Behavior of ultrahigh-performance concrete confined by fiber-reinforced polymers[J]. Journal of Materials in Civil Engineering,2011,23(12):1727-1734. doi: 10.1061/(ASCE)MT.1943-5533.0000324
    [26] WANG W, WU C, LIU Z, et al. Compressive behavior of ultra-high performance fiber-reinforced concrete (UHPFRC) confined with FRP[J]. Composite Structures,2018,204:419-437. doi: 10.1016/j.compstruct.2018.07.102
    [27] ZENG J J, YE Y Y, GAO W Y, et al. Stress-strain behavior of polyethylene terephthalate fiber-reinforced polymer-confined normal-, high- and ultra high-strength concrete[J]. Journal of Building Engineering,2020,30:101243. doi: 10.1016/j.jobe.2020.101243
    [28] American Society for Testing and Materials. Standard test method for apparent hoop tensile strength of plastic or reinforced plastic pipe: ASTM D2290-19[S]. West Conshohocken: ASTM, 2019.
    [29] 中国国家标准化管理委员会. 纤维增强热固性塑料管轴向压缩性能试验方法: GB/T 5350—2015[S]. 北京: 中国标准出版社, 2015.

    Standardization Administration of China. Fiber-reinforced thermosetting plastics composites-determination for longitudinal compressive properties: GB/T 5350—2015[S]. Beijing: Standards Press of China, 2005(in Chinese).
    [30] 中国国家标准化管理委员会. 纤维增强复合材料筋基本力学性能试验方法: GB/T 30022—2013[S]. 北京: 中国标准出版社, 2013.

    Standardization Administration of China. Test method for basic mechanical properties of fiber reinforced polymer bar: GB/T 30022—2013[S]. Beijing: Standards Press of China, 2013(in Chinese).
    [31] American Concrete Institute. Guide test methods for fiber-reinforced polymers (FRPs) for reinforcing or strengthening concrete structures: ACI 440.3 R-12[S]. Farmington Hill: American Concrete Institute, 2012.
    [32] PROTCHENKO K, ZAYOUD F, URBANSKI M, et al. Tensile and shear testing of basalt fiber reinforced polymer (BFRP) and hybrid basalt/carbon fiber reinforced polymer (HFRP) bars[J]. Materials,2020,13(24):5839. doi: 10.3390/ma13245839
    [33] GENIKOMSOU A S, BALOMENOS G P, ARCZEWSKA P, et al. Transverse shear testing of GFRP bars with reduced cross sections[J]. Journal of Composites for Construction,2018,22(5):04018041. doi: 10.1061/(ASCE)CC.1943-5614.0000880
    [34] 徐健, 周祝林. 纤维复合材料圆管的扭转剪切模量和弯曲剪切模量对比分析[J]. 玻璃钢, 2001(3):1-6.

    XU Jian, ZHOU Zhulin. Comparative analysis of torsional shear modulus and bending shear modulus of fiber composite pipe[J]. Fiber Reinforced Plastics,2001(3):1-6(in Chinese).
  • 加载中
图(12) / 表(6)
计量
  • 文章访问数:  862
  • HTML全文浏览量:  440
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-01
  • 修回日期:  2022-08-09
  • 录用日期:  2022-08-23
  • 网络出版日期:  2022-09-05
  • 刊出日期:  2022-11-01

目录

    /

    返回文章
    返回