留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

圆钢管玄武岩纤维再生混凝土短柱轴压力学性能

张向冈 周高强 范玉辉 高翔 冷发光 汪昉

张向冈, 周高强, 范玉辉, 等. 圆钢管玄武岩纤维再生混凝土短柱轴压力学性能[J]. 复合材料学报, 2022, 40(0): 1-15
引用本文: 张向冈, 周高强, 范玉辉, 等. 圆钢管玄武岩纤维再生混凝土短柱轴压力学性能[J]. 复合材料学报, 2022, 40(0): 1-15
Xianggang ZHANG, Gaoqiang ZHOU, Yuhui FAN, Xiang GAO, Faguang LENG, Fang WANG. Axial compressive property of circular steel tubular stub column filled with basalt-fiber reinforced recycled-concrete[J]. Acta Materiae Compositae Sinica.
Citation: Xianggang ZHANG, Gaoqiang ZHOU, Yuhui FAN, Xiang GAO, Faguang LENG, Fang WANG. Axial compressive property of circular steel tubular stub column filled with basalt-fiber reinforced recycled-concrete[J]. Acta Materiae Compositae Sinica.

圆钢管玄武岩纤维再生混凝土短柱轴压力学性能

基金项目: 建筑安全与环境国家重点实验室暨国家建筑工程技术研究中心开放课题基金(BSBE2019-06);河南省高校基本科研业务费专项(NSFRF200320);河南理工大学青年骨干教师资助计划项目(2019XQG-15);国家自然科学基金 (U1904188)
详细信息
    通讯作者:

    范玉辉,博士,讲师,研究方向为混凝土结构及其耐久性研究和建筑废弃物资源化利用等领域  E-mail: fyhzzdx2003@hpu.edu.cn

  • 中图分类号: TU398.9

Axial compressive property of circular steel tubular stub column filled with basalt-fiber reinforced recycled-concrete

  • 摘要: 为研究圆钢管玄武岩纤维再生混凝土短柱的轴压力学性能,以再生粗骨料取代率和玄武岩纤维掺量为变化参数,设计并完成了15根圆钢管玄武岩纤维再生混凝土短柱试件的轴压试验。观察了试件的受力全过程以及破坏形态,获取了试件的荷载-位移曲线及荷载-应变曲线,分析了变化参数对圆钢管玄武岩纤维再生混凝土短柱轴压性能的影响,建立了可行的组合截面应力-应变全过程曲线方程。研究表明:试件均发生鼓曲破坏,但核心混凝土在钢管约束下处于碎而不散状态;随着再生粗骨料取代率的增大,试件的耗能性能、延性系数逐渐增大,耗能因子、延性系数提升幅度最高可达1.64%和10.36%,承载力逐渐降低,降低幅度最大达5.03%;随着玄武岩纤维掺量的增大,试件的耗能性能、延性系数逐渐增大,增加幅度最高可达2.97%和4.93%,承载力提高幅度不大;不同的玄武岩纤维掺量下,试件实测的荷载-位移曲线饱满,且具有较长的变形流幅,延性较好。

     

  • 图  1  加载装置及测点布置示意图

    Figure  1.  Schematic of loading device and measured point arrangement

    图  2  圆钢管玄武岩纤维再生混凝土短柱破坏形态

    Figure  2.  Failure mode of BFRRC-filled circular steel tubular stub column specimens

    图  3  核心玄武岩纤维再生混凝土(BFRRC)破坏形态

    Figure  3.  Failure mode of internal basalt fiber reinforced recycled concrete (BFRRC)

    图  4  圆钢管玄武岩纤维再生混凝土短柱荷载-轴向变形曲线

    Figure  4.  Curves of load versus axial displacement for BFRRC-filled circular steel tubular stub column specimens

    图  5  圆钢管玄武岩纤维再生混凝土短柱荷载-应变关系曲线

    Figure  5.  Relation curves of load versus strain for BFRRC-filled circular steel tubular stub column specimens

    εv—Axial strain; εh—Hoop strain

    图  6  圆钢管玄武岩纤维再生混凝土短柱峰值承载力随取代率的变化幅度

    Figure  6.  Variation in BFRRC-filled circular steel tubular stub column specimens peak bearing capacity with replacement ratio

    图  7  圆钢管玄武岩纤维再生混凝土短柱峰值承载力随纤维掺量的变化幅度

    Figure  7.  Variation in the peak bearing capacity of BFRRC-filled circular steel tubular stub column specimens with fiber content

    图  8  耗能计算模型

    Figure  8.  Calculation model of energy dissipation

    图  9  圆钢管玄武岩纤维再生混凝土短柱耗能因子与取代率、纤维掺量变化关系

    Figure  9.  Relations among energy dissipation factor, replacement ratio, and fiber content for the BFRRC-filled circular steel tubular stub column specimens

    图  10  圆钢管玄武岩纤维再生混凝土短柱延性系数与取代率、纤维掺量变化关系

    Figure  10.  Relations among ductility coefficient, replacement ratio, and fiber content for the BFRRC-filled circular steel tubular stub column specimens

    图  11  圆钢管玄武岩纤维再生混凝土短柱无量纲组合截面应力-应变全过程曲线

    Figure  11.  Dimensionless full-curve of composite-section stress versus strain for the BFRRC-filled circular steel tubular stub column specimens

    12  典型圆钢管玄武岩纤维再生混凝土短柱组合截面应力-应变试验与计算曲线对比

    12.  Comparison of composite-section stress–strain curves between test and calculation for typical BFRRC-filled circular steel tubular stub column specimens

    表  1  再生混凝土(RAC)的配合比

    Table  1.   Mix ratio of recycled aggregate concrete (RAC)

    δ/%Water-binder
    ratio
    Sand ratio/%Net water/
    (kg·m−3)
    Additional water/
    (kg·m−3)
    Cement/
    (kg·m−3)
    Fly-ash/
    (kg·m−3)
    Recycled coarse
    aggregate/
    (kg·m−3)
    Nature coarse
    aggregate/
    (kg·m−3)
    Sand/
    (kg·m−3)
    Water reducer/
    (kg·m−3)
    00.40312050.0427.185.40.01115.25012.56
    250.403120515.6427.185.4278.8836.45012.56
    500.403120531.2427.185.4557.6557.65012.56
    750.403120546.8427.185.4836.4278.85012.56
    1000.403120562.5427.185.41115.20.05012.56
    Note: δ is the replacement ratio of recycled coarse aggregate.
    下载: 导出CSV

    表  2  RAC实测强度指标

    Table  2.   Measured strength index of RAC

    δ/%λ/(kg·m-3)fcu/MPafc/MPafc/fcuEc/GPav
    0037.431.80.8524.700.20
    25036.528.50.7816.800.23
    50034.226.00.7616.600.25
    75032.923.80.7213.300.26
    100032.723.20.7115.200.27
    0237.932.90.8724.800.16
    25237.029.00.7819.010.17
    50234.926.70.7718.480.19
    75233.824.60.7314.600.20
    100233.123.70.7213.420.22
    0438.733.10.8628.400.14
    25437.629.40.7821.470.16
    50436.227.50.7618.910.18
    75435.125.80.7419.060.19
    100434.224.00.7018.270.21
    Notes: λ indicates the mass of basalt fiber added to 1 m3 RAC; fcu is the cubic compressive strength; fc is the axial compressive strength; Ec is the elastic modulus, which is the secant modulus of the stress-strain curve from origin to 0.4 fc; v is Poisson’s ratio, which is the ratio of the transverse strain to the longitudinal strain of BFRRC at 0.4 fc stress.
    下载: 导出CSV

    表  3  圆钢管玄武岩纤维再生混凝土短柱具体设计参数及实测峰值承载力

    Table  3.   Specific design parameters and measured peak bearing capacity of the BFRRC-filled circular steel tubular stub column specimens

    Specimen No.αξfc/MPaNu/kN
    NAC0.09420.99731.81484.0
    RAC(25%)0.09421.11328.51475.0
    RAC(50%)0.09421.22026.01470.2
    RAC(75%)0.09421.33223.81415.4
    RAC(100%)0.09421.36723.21357.1
    2BF/NAC0.09420.96432.91554.2
    2BF/RAC(25%)0.09421.09329.01536.7
    2BF/RAC(50%)0.09421.18826.71468.2
    2BF/RAC(75%)0.09421.28924.61418.1
    2BF/RAC(100%)0.09421.33823.71346.8
    4BF/NAC0.09420.95833.11499.2
    4BF/RAC(25%)0.09421.07929.41490.4
    4BF/RAC(50%)0.09421.15327.51446.7
    4BF/RAC(75%)0.09421.22925.81426.9
    4BF/RAC(100%)0.09421.32124.01369.9
    Notes: α—Steel ratio, α=As/Ac, where As and Ac are the cross-sectional area of the steel tube and internal concrete, respectively; ξ—Confinement coefficient, ξ = αfy/fc; Nu—Test value of the ultimate bearing capacity of the specimen. In the naming method of a specimen, for example, in 2BF/RAC(25%), 2 represents the basalt fiber content of 2 kg/m3, 25% is the replacement ratio of recycled coarse aggregate, NAC is the natural aggregate concrete.
    下载: 导出CSV

    表  4  圆钢管玄武岩纤维再生混凝土短柱各应力值、承载力退化幅度和回升幅度

    Table  4.   Stress values, degradation amplitude, and rebound amplitude for bearing capacity of the BFRRC-filled circular steel tubular stub column specimens

    Specimen No.σ1σ2σ3λ1λ2
    C-0-074.7465.8574.210.880.99
    C-25-074.2972.7976.940.981.04
    C-50-074.0469.7575.370.941.02
    C-75-071.2867.6970.100.950.98
    C-100-068.3566.0773.470.971.07
    Average0.941.02
    C-0-278.2761.3462.610.780.80
    C-25-277.3971.3279.830.921.03
    C-50-273.9470.1471.060.950.96
    C-75-271.4268.5773.730.961.03
    C-100-267.8364.6372.920.951.08
    Average0.910.98
    C-0-475.5073.0377.170.971.02
    C-25-475.0667.0479.410.891.06
    C-50-472.8668.7776.210.941.05
    C-75-471.8669.6773.730.971.03
    C-100-468.9966.6174.420.971.08
    Average0.951.05
    Notes: σ1, σ2 and σ3 represent the first peak stress, the valley stress, and secondary peak stress, respectively. λ1 and λ2 represent degradation amplitude and rebound amplitude for bearing capacity, respectively.
    下载: 导出CSV

    表  5  圆钢管玄武岩纤维再生混凝土短柱轴压性能指标

    Table  5.   Axial compression performance index of BFRRC-filled circular steel tubular stub column specimens

    Specimen No.Pm/kNημ
    NAC1484.00.8311.87
    RAC(25%)1475.00.8411.99
    RAC(50%)1470.20.8542.09
    RAC(75%)1415.40.8662.18
    RAC(100%)1357.10.8672.26
    2BF/NAC1554.20.8541.89
    2BF/RAC(25%)1536.70.8662.03
    2BF/RAC(50%)1468.20.8692.10
    2BF/RAC(75%)1418.10.8852.28
    2BF/RAC(100%)1346.80.8862.37
    4BF/NAC1499.20.8761.93
    4BF/RAC(25%)1490.40.8852.13
    4BF/RAC(50%)1446.70.8882.20
    4BF/RAC(75%)1426.90.8892.30
    4BF/RAC(100%)1369.90.8902.48
    Notes: Pm represents the test value of ultimate bearing capacity, η represents the energy dissipation factor, μ represents the ductility factor.
    下载: 导出CSV
  • [1] 商效瑀, 杨经纬, 李江山. 基于CT图像的再生混凝土细观破坏裂纹分形特征[J]. 复合材料学报, 2020, 37(7):1774-1784.

    SHANG Xiaoyu, YANG Jingwei, LI Jiangshan. Fractal characteristics of meso-failure crack in recycled coarse aggregate concrete based on CT image[J]. Acta Materiae Compositae Sinica,2020,37(7):1774-1784(in Chinese).
    [2] 陈守开, 刘新飞, 郭 磊, 等. 再生骨料掺配比对再生透水混凝土性能的影响[J]. 复合材料学报, 2018, 35(6):1590-1598.

    CHEN Shoukai, LIU Xinfei, GUO Lei, et al. Influence of recycled aggregate proportion on performance of recycled pervious concrete[J]. Acta Materiae Compositae Sinica,2018,35(6):1590-1598(in Chinese).
    [3] 王玉梅, 邓志恒, 肖建庄, 等. 再生混凝土压-剪应力下受力性能与破坏准则[J]. 建筑结构学报, 2020, 41(S1):373-380.

    WANG Yumei, DENG Zhiheng, XIAO Jianzhuang, et al. Mechanical properties and failure criterion of recycled aggregate concrete under compressive-shear stress state[J]. Journal of Building Structures,2020,41(S1):373-380(in Chinese).
    [4] 关博文, 吴佳育, 陈华鑫, 等. 再生骨料残余砂浆覆盖率测试及其对混凝土渗透性的影响[J]. 中国公路学报, 2021, 34(10):155-165. doi: 10.3969/j.issn.1001-7372.2021.10.013

    GUAN Bowen, WU Jiayu, CHEN Huaxin, et al. Test of coverage rate of residual mortar on recycled aggregate and lts influence on permeability of concrete[J]. China Journal of Highway and Transport,2021,34(10):155-165(in Chinese). doi: 10.3969/j.issn.1001-7372.2021.10.013
    [5] 陈宗平, 周春恒, 李 伊, 等. 高温后再生混凝土力学性能研究[J]. 建筑结构学报, 2017, 38(12):105-113.

    CHEN Zongping, ZHOUChunheng, LI Yi, et al. Research on mechanical behavior of recycled aggregate concrete after high temperatures[J]. Journal of Building Structures,2017,38(12):105-113(in Chinese).
    [6] 段珍华, 江山山, 肖建庄, 等. 再生粗骨料含水状态对混凝土性能的影响[J]. 建筑材料学报, 2021, 24(03):545-550.

    DUAN Zhenhua, JIANG Shanshan, XIAO Jianzhuang, et al. Effect of moisture condition of recycled coarse aggregate on the properties of concrete[J]. Journal of Building Materials,2021,24(03):545-550(in Chinese).
    [7] WU B, LIN L, ZHAO JX, et al. Creep behavior of thin-walled circular steel tubular columns filled with demolished concrete lumps and fresh concrete[J]. Construction and Building Materials,2018,187:773-790. doi: 10.1016/j.conbuildmat.2018.07.222
    [8] 蔡敏伟, 王卫华, 丁启荣, 等. 复式不锈钢管再生块体混凝土短柱轴压试验研究[J]. 建筑结构学报, 2019, 40(S1):226-233.

    CAI Minwei, WANG Weihua, DING Qirong, et al. Tests on composite-sectioned stainless CFST columns filled with demolished concrete lumps under axial compression[J]. Journal of Building Structures,2019,40(S1):226-233(in Chinese).
    [9] 贾恒瑞, 陈宗平, 陈俊睿. 高温后圆钢管再生混凝土界面黏结滑移性能及本构方程研究[J]. 工程力学, 2021, 38(10):119-133. doi: 10.6052/j.issn.1000-4750.2020.09.0691

    JIA Hengrui, CHEN Zongping, CHEN Junrui. Research on interfacial bond behavior and constitutive equation of recycled aggregate concrete filled circle steel tube after exposure to high temperature[J]. Engineering Mechanics,2021,38(10):119-133(in Chinese). doi: 10.6052/j.issn.1000-4750.2020.09.0691
    [10] ZENG L, LI LJ, SU Z, et al. Compressive test of GFRP-recycled aggregate concrete-steel tubular long columns[J]. Construction and Building Materials,2018,176:295-312. doi: 10.1016/j.conbuildmat.2018.05.068
    [11] ZHANG XG, GAO X. The hysteretic behavior of recycled aggregate concrete-filled square steel tube columns[J]. Engineering Structures,2019,198:109523. doi: 10.1016/j.engstruct.2019.109523
    [12] CHEN ZP, JING CG, XU JJ, et al. Seismic performance of recycled concrete-filled square steel tube columns[J]. Earthquake Engineering and Engineering Vibration,2017,16(1):119-130. doi: 10.1007/s11803-017-0372-2
    [13] 马 辉, 郭婷婷, 李 哲, 等. 圆钢管型钢再生混凝土组合柱轴压性能及承载力计算[J]. 建筑结构学报, 2018, 39(2):97-105.

    MA Hui, GUO Tingting, LI Zhe, et al. Axial compression performance and bearing capacity calculation of recycled concrete filled circular steel tube-profile steel composite columns[J]. Journal of Building Structures,2018,39(2):97-105(in Chinese).
    [14] 陈梦成, 方 苇, 黄 宏, 等. 锈蚀圆钢管再生混凝土轴压短柱受力性能研究[J]. 建筑结构学报, 2019, 40(12):138-146.

    CHEN Mengcheng, FANG Wei, HUANG Hong, et al. Axial compressive behavior of recycled concrete filled corroded circular steel tubular columns[J]. Journal of Building Structures,2019,40(12):138-146(in Chinese).
    [15] 柯晓军, 但 宇, 龙虹任, 等. 冷却方式对高温后方钢管再生混凝土短柱轴压性能的影响[J]. 应用基础与工程科学学报, 2021, 29(1):182-192.

    KE Xiaojun, DAN Yu, LONG Hongren, et al. Influence of cooling methods on axial compressive performance of racfsst short columns after high temperatures[J]. Journal of Basic Science and Engineering,2021,29(1):182-192(in Chinese).
    [16] 杨有福, 黄翔宇. 矩形钢管再生混凝土短柱的轴压性能[J]. 华南理工大学学报(自然科学版), 2017, 45(12):121-127.

    YANG Youfu, HUANG Xiangyu. Compressive behavior of rectangular recycled aggregate concrete-filled steel-tubular stub columns[J]. Journal of South China University of Technology (Natural Science Edition),2017,45(12):121-127(in Chinese).
    [17] 刘 坚, 张鹏程, 江 进, 等. 圆钢管H型钢再生混凝土短柱的轴压承载力分析[J]. 西南交通大学学报, 2020, 55(06):1280-1286.

    LIU Jian, ZHANG Pengcheng, JIANG Jin, et al. Axial bearing capacity analysis of h-section steel-reinforced recycled aggregate concrete filled circular steel tube stub columns[J]. Journal of Southwest Jiaotong University,2020,55(06):1280-1286(in Chinese).
    [18] LI WG, LUO ZY, TAO Z, et al. Mechanical behavior of recycled aggregate concrete-filled steel tube stub columns after exposure to elevated temperatures[J]. Construction and Building Materials,2017,146:571-581. doi: 10.1016/j.conbuildmat.2017.04.118
    [19] ZHANG XG, KUANG XM, WANG F, et al. Strength indices and conversion relations for basalt fiber-reinforced recycled aggregate concrete[J]. Dyna,2019,94(1):82-87. doi: 10.6036/8986
    [20] ALNAHHAL W, ALJIDDA O. Flexural behavior of basalt fiber reinforced concrete beams with recycled concrete coarse aggregates[J]. Construction and Building Materials,2018,169:165-178. doi: 10.1016/j.conbuildmat.2018.02.135
    [21] KATKHUDA H, SHATARAT N. Improving the mechanical properties of recycled concrete aggregate using chopped basalt fibers and acid treatment[J]. Construction and Building Materials,2017,140:328-335. doi: 10.1016/j.conbuildmat.2017.02.128
    [22] WANG YY, CHEN J, GENG Y. Testing and analysis of axially loaded normal-strength recycled aggregate concrete filled steel tubular stub columns[J]. Engineering Structures,2015,86:192-212. doi: 10.1016/j.engstruct.2015.01.007
    [23] CHEN J, LIU X, LIU HW, et al. Axial compression behavior of circular recycled concrete-filled steel tubular short columns reinforced by silica fume and steel fiber[J]. Steel and Composite Structures,2018,27(2):193-200.
    [24] HOU M, DONG JF, LI L, et al. Experimental research on AFRP reinforced recycled steel tube columns subjected to axial compression[J]. Advanced Composites Letters,2017,26(6):198-201.
    [25] XU JJ, CHEN ZP, ZHAO XY, et al. Seismic performance of circular recycled aggregate concrete- filled steel tubular columns: FEM modelling and sensitivity analysis[J]. Thin-Walled Structures,2019,141:509-525. doi: 10.1016/j.tws.2019.04.016
    [26] KURDA R, DE BRITO J, SILVESTRE JD, et al. Combined influence of recycled concrete aggregates and contents of fly ash on concrete properties[J]. Construction and Building Materials,2017,157:554-572. doi: 10.1016/j.conbuildmat.2017.09.128
    [27] 中华人民共和国住房和城乡建设部. 混凝土物理力学性能试验方法标准: GB/T50081—2019[S]. 北京: 中国建筑工业出版社, 2019.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Standard for test methods of concrete physical and mechanical properties: GB/T 50081—2019[S]. Beijing: China Architecture & Building Press, 2019(in Chinese).
    [28] 中国国家标准化管理委员会. 金属材料 拉伸试验 第1部分: 室温试验方法: GB/T228.1-2010[S]. 北京: 中国标准出版社, 2011.

    Standardization Administration of the People’s Republic of China. Metallic materials-Tensile testing-Part 1: Method of test at room temperature: GB/T228.1-2010[S]. Beijing: China Standards Press, 2011(in Chinese).
    [29] 韩林海. 钢管混凝土结构—理论与实践(第三版)[J]. 北京:科学出版社, 2018:222-259.

    HAN Linhai. Concrete filled steel tube structures-theory and practice (Third edition)[J]. Beijing:Science Press,2018:222-259(in Chinese).
    [30] 柯晓军, 陈宗平, 薛建阳, 等. 方钢管再生混凝土短柱轴压承载性能试验研究[J]. 工程力学, 2013, 30(8):35-41. doi: 10.6052/j.issn.1000-4750.2011.11.0759

    KE Xiaojun, CHEN Zongping, XUE Jianyang, et al. Experimental study on the bearing capacity of recycled aggregate concrete-filled square steel tube short columns under axial compression[J]. Engineering Mechanics,2013,30(8):35-41(in Chinese). doi: 10.6052/j.issn.1000-4750.2011.11.0759
  • 加载中
计量
  • 文章访问数:  112
  • HTML全文浏览量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-06
  • 录用日期:  2022-03-08
  • 修回日期:  2022-02-17
  • 网络出版日期:  2022-03-28

目录

    /

    返回文章
    返回