留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

核-壳MoS2@SiO2纳米复合材料的制备及其高温摩擦学性能

吴彤 高原 王伟 王快社

吴彤, 高原, 王伟, 等. 核-壳MoS2@SiO2纳米复合材料的制备及其高温摩擦学性能[J]. 复合材料学报, 2023, 40(11): 6163-6172. doi: 10.13801/j.cnki.fhclxb.20230105.003
引用本文: 吴彤, 高原, 王伟, 等. 核-壳MoS2@SiO2纳米复合材料的制备及其高温摩擦学性能[J]. 复合材料学报, 2023, 40(11): 6163-6172. doi: 10.13801/j.cnki.fhclxb.20230105.003
WU Tong, GAO Yuan, WANG Wei, et al. Preparation and high temperature tribological properties of core-shell MoS2@SiO2 nanocomposites[J]. Acta Materiae Compositae Sinica, 2023, 40(11): 6163-6172. doi: 10.13801/j.cnki.fhclxb.20230105.003
Citation: WU Tong, GAO Yuan, WANG Wei, et al. Preparation and high temperature tribological properties of core-shell MoS2@SiO2 nanocomposites[J]. Acta Materiae Compositae Sinica, 2023, 40(11): 6163-6172. doi: 10.13801/j.cnki.fhclxb.20230105.003

核-壳MoS2@SiO2纳米复合材料的制备及其高温摩擦学性能

doi: 10.13801/j.cnki.fhclxb.20230105.003
基金项目: 国家自然科学基金项目(52005386);陕西省创新能力支撑计划科技创新团队项目(2022TD-30)
详细信息
    通讯作者:

    高原,博士,副教授,硕士生导师,研究方向为锆合金塑性变形中的摩擦与润滑 E-mail: yuan-gao@xauat.edu.cn

  • 中图分类号: TB332

Preparation and high temperature tribological properties of core-shell MoS2@SiO2 nanocomposites

Funds: National Natural Science Foundation of China (52005386); Scientific and Technological Innovation Team Project of Shaanxi Innovation Capability Support Plan (2022TD-30)
  • 摘要: 二硫化钼(MoS2)在高温条件使用易发生氧化导致其摩擦学性能大幅劣化,表现出较高的摩擦系数。为了改善MoS2润滑剂在高温环境下的摩擦学性能,本文通过水热法和改良Stöber法生成核-壳MoS2@SiO2纳米复合材料。通过透射电子显微镜(TEM)、扫描电子显微镜(SEM)及X射线衍射仪(XRD)等对制备的纳米材料的形态、尺寸和组成进行表征。微观结果显示了核-壳结构复合材料的成功制备,平均粒径250 nm。对制备的MoS2@SiO2固体润滑涂层进行高温摩擦实验,并以MoS2涂层作为对比。采用SEM、XRD等对涂层的形貌、结构进行了表征,采用三维轮廓仪对涂层磨损率进行表征。结果表明:MoS2@SiO2涂层在680℃下的摩擦系数为0.2且较平稳,MoS2涂层则迅速失效。MoS2@SiO2涂层耐磨性更好,磨损率比MoS2涂层低25.86%。摩擦实验后MoS2@SiO2涂层磨痕区域仍存在MoS2,有润滑膜覆盖;而MoS2涂层磨痕区的基体完全暴露。由此表明,SiO2外壳的包覆延缓了MoS2在高温下的迅速氧化,且两者协同润滑,延长了涂层的使用寿命。

     

  • 图  1  (a) MoS2@SiO2的合成示意图;(b) 摩擦磨损试验示意图

    TAA—Thioacetamide; PVP—Polyvinylpyrrolidone; TEOS—Tetraethyl orthosilicate

    Figure  1.  (a) Schematic of the preparation of MoS2@SiO2; (b) Schematic of friction and wear tests

    图  2  MoS2 (a)和MoS2@SiO2 (b)的SEM图像;MoS2 (c)和MoS2@SiO2 (d)的TEM图像

    Figure  2.  SEM images of MoS2 (a) and MoS2@SiO2 (b); TEM images of MoS2 (c) and MoS2@SiO2 (d)

    图  3  (a) MoS2@SiO2的EDS面扫描图像;相应的EDS元素分布图:(b) Si;(c) O;(d) Mo;(e) S;(f) MoS2@SiO2的EDS光谱数据

    Figure  3.  (a) EDS map scanning profile across the MoS2@SiO2; Corresponding EDS elemental mapping: (b) Si; (c) O; (d) Mo; (e) S; (f) EDS spectrum data of MoS2@SiO2

    图  4  (a) MoS2和MoS2@SiO2的XRD衍射图谱;(b) MoS2和MoS2@SiO2的拉曼图谱

    E12g—In-plane vibration mode of MoS2; A1g—Interlayer vibration mode of MoS2

    Figure  4.  (a) XRD patterns of MoS2 and MoS2@SiO2; (b) Raman spectra of MoS2 and MoS2@SiO2

    图  5  MoS2和MoS2@SiO2的TG和DSC曲线

    Figure  5.  TG and DSC curves of MoS2 and MoS2@SiO2

    图  6  MoS2和MoS2@SiO2在纯水中的粒径分布曲线

    D10, D50, D90—Particle size with a cumulative distribution of 10%, 50%, 90%

    Figure  6.  Particle size distribution curves of MoS2 and MoS2@SiO2 in water

    图  7  MoS2涂层 (a) 和MoS2@SiO2涂层(b)的SEM图像和元素分布

    Figure  7.  SEM images and elemental distributions of MoS2 coating (a) and MoS2@SiO2 coating (b)

    图  8  (a) MoS2涂层和MoS2@SiO2涂层的XRD图谱;(b) MoS2涂层和MoS2@SiO2涂层在680℃高温摩擦实验之后的XRD图谱

    Figure  8.  (a) XRD patterns of MoS2 coating and MoS2@SiO2 coating; (b) XRD patterns of MoS2 coating and MoS2@SiO2 coating after high temperature friction test at 680℃

    图  9  MoS2涂层和MoS2@SiO2涂层在680℃和室温(RT)下的摩擦系数曲线

    Figure  9.  Friction coefficient curves of MoS2 coating and MoS2@SiO2 coating at 680℃ and room temperature (RT)

    图  10  ((a), (b)) MoS2涂层和MoS2@SiO2涂层高温摩擦实验后的对偶球形貌;((c), (d)) MoS2涂层和MoS2@SiO2涂层高温摩擦实验后的磨痕

    Figure  10.  ((a), (b)) Friction pairs of MoS2 coating and MoS2@SiO2 coating after friction test; ((c), (d)) Wear scar of MoS2 coating and MoS2@SiO2 coating after friction test

    图  11  MoS2涂层(a)和MoS2@SiO2涂层(b) 磨损表面的三维形貌和磨痕深度曲线

    Figure  11.  3D morphology and wear scar depth curve of MoS2 coating (a) and MoS2@SiO2 coating (b)

    图  12  MoS2涂层(a)和MoS2@SiO2涂层(b)的磨损表面形貌和元素分布

    Figure  12.  Surface morphology and element distribution at wear scar of MoS2 coating (a) and MoS2@SiO2 coating (b)

    图  13  MoS2涂层和MoS2@SiO2涂层磨损表面的拉曼图谱

    Figure  13.  Raman spectrum at wear scar of MoS2 coatingand MoS2@SiO2 coating

  • [1] XIE H M, JIANG B, HE J J, et al. Lubrication performance of MoS2 and SiO2 nanoparticles as lubricant additives in magnesium alloy-steel contacts[J]. Tribology International,2016,93:63-70. doi: 10.1016/j.triboint.2015.08.009
    [2] 林高鑫, 王家成. 单原子掺杂二硫化钼析氢催化的进展和展望[J]. 高等学校化学报, 2022, 43(9):65-78.

    LIN Gaoxin, WANG Jiacheng. Progress and perspective on molybdenum disulfide with single-atom doping toward hydrogen evolution[J]. Chemical Journal of Chinese Universities,2022,43(9):65-78(in Chinese).
    [3] 张爽, 王子鸣, 卢雅宁, 等. 熔盐电解法制备NbS2@MoS2复合材料及其电催化析氢性能[J]. 复合材料学报, 2022, 39(8):3882-3890.

    ZHANG Shuang, WANG Ziming, LU Yaning, et al. Molten salt electrolysis synthesis of NbS2@MoS2 and its performance for water splitting into hydrogen[J]. Acta Materiae Compositae Sinica,2022,39(8):3882-3890(in Chinese).
    [4] 靳欣, 朱颖, 胡文浩, 等. 原位碳包覆二硫化钼用于锂离子电池负极材料[J]. 有色金属工程, 2021, 11(6):12-16. doi: 10.3969/j.issn.2095-1744.2021.06.003

    JIN Xin, ZHU Ying, HU Wenhao, et al. In-situ carbon-coated molybdenum disulfide as anode material for lithium-ion batteries[J]. Nonferrous Metals Engineering,2021,11(6):12-16(in Chinese). doi: 10.3969/j.issn.2095-1744.2021.06.003
    [5] GONG C Y, XIAO J R, ZHU L W, et al. Crystal structure and tribological properties of molybdenum disulfide films prepared by magnetron sputtering technology[J]. Current Applied Physics,2019,19(12):1318-1324. doi: 10.1016/j.cap.2019.08.017
    [6] WAN Q M, JIN Y, SUN P C, et al. Rheological and tribological behaviour of lubricating oils containing platelet MoS2 nanoparticles[J]. Journal of Nanoparticle Research,2014,16(5):1-9. doi: 10.1007/s11051-014-2386-2
    [7] HU E Z, XU Y, HU K H, et al. Tribological properties of 3 types of MoS2 additives in different base greases[J]. Lubrication Science,2017,29(8):541-555. doi: 10.1002/ls.1387
    [8] 谢杭明, 吴汉卿, 何志伟, 等. MoS2/MXene纳米复合物的研究进展[J]. 复合材料学报, 2022, 39(3):1005-1016.

    XIE Hangming, WU Hanqing, HE Zhiwei, et al. Research progress in MoS2/MXene nanocomposites[J]. Acta Materiae Compositae Sinica,2022,39(3):1005-1016(in Chinese).
    [9] RAJESH S, VELMURUGAN C, EBENEZER J, et al. Studies on the tribological behaviour of exsitu-synthesized AlMg1SiCu/titanium carbide/molybdenum disulfide hybrid composites[J]. Materials Research Express,2019,6(12):1265b4.
    [10] NIAN J Y, CHEN L W, GUO Z G, et al. Computational investigation of the lubrication behaviors of dioxides and disulfides of molybdenum and tungsten in vacuum[J]. Friction,2017,5(1):23-31. doi: 10.1007/s40544-016-0128-4
    [11] GUNDA R K, NARALA S K R. Evaluation of friction and wear characteristics of electrostatic solid lubricant at different sliding conditions[J]. Surface & Coatings Technology,2017,332:341-350.
    [12] MARTIN J M, DONNET C, LE MOGNE T, et al. Superlubricity of molybdenum disulphide[J]. Physical Review B,1993,48(14):10583-10586. doi: 10.1103/PhysRevB.48.10583
    [13] KHARE H S, BURRIS D L. The effects of environmental water and oxygen on the temperature-dependent friction of sputtered molybdenum disulfide[J]. Tribology Letters,2013,52(3):485-493. doi: 10.1007/s11249-013-0233-8
    [14] MURATORE C, BULTMAN J E, AOUADI S M, et al. In situ Raman spectroscopy for examination of high temperature tribological processes[J]. Wear,2011,270(3):140-145.
    [15] SPYCHALSKI W L, PISAREK M, SZOSEKIEWICZ R. Microscale insight into oxidation of single MoS2 crystals in air[J]. The Journal of Physical Chemistry C,2017,121(46):26027-26033. doi: 10.1021/acs.jpcc.7b05405
    [16] MOHAMMAD R V, ASHLIE M, DAVID A S, et al. Solid lubrication with MoS2: A review[J]. Lubricants,2019,7(7):57. doi: 10.3390/lubricants7070057
    [17] MENG F M, YANG C Z, HAN H L, et al. Study on tribological performances of MoS2 coating at high temperature[J]. Proceedings of the Institution of Mechanical Engineers,2018,232(8):964-973. doi: 10.1177/1350650117735272
    [18] ZHAI J, LI Y J, ZHAO L C, et al. Exploring the effects of boron nitride coating on the thermal stability and photoluminescence properties of molybdenum disulfide nanospheres[J]. Ceramics International,2019,45(17):23694-23700. doi: 10.1016/j.ceramint.2019.08.084
    [19] TIAN Y M, ZHAO J Z, FU W Y, et al. A facile route to synthesis of MoS2 nanorods[J]. Materials Letters,2005,59(27):3452-3455. doi: 10.1016/j.matlet.2005.06.012
    [20] ROSENTSVEIG R, GORODNEV A, FEUERSTEIN N, et al. Fullerene-like MoS2 nanoparticles and their tribological behavior[J]. Tribology Letters,2009,36(2):175-182. doi: 10.1007/s11249-009-9472-0
    [21] LEE Y H, ZHANG X Q, ZHANG W J, et al. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition[J]. Advanced Materials,2012,24(17):2320-2325. doi: 10.1002/adma.201104798
    [22] VOLLATH D, SZABÓ D V. Synthesis of nanocrystalline MoS2 and WS2 in a microwave plasma[J]. Materials Letters,1998,35(3):236-244.
    [23] LU J P, LU J H, LIU H W, et al. Improved photoelectrical properties of MoS2 films after laser micromachining[J]. ACS Nano,2014,8(6):6334-6343. doi: 10.1021/nn501821z
    [24] LI N, CHAI Y M, LI Y P, et al. Ionic liquid assisted hydrothermal synthesis of hollow vesicle-like MoS2 microspheres[J]. Materials Letters,2012,66(1):236-238. doi: 10.1016/j.matlet.2011.08.092
    [25] PARK S K, YU S H, WOO S, et al. A facile and green strategy for the synthesis of MoS2 nanospheres with excellent Li-ion storage properties[J]. CrystEngComm,2012,14(24):8323-8325. doi: 10.1039/c2ce26447a
    [26] ZHANG X H, HUANG X H, XUE M Q, et al. Hydrothermal synthesis and characterization of 3D flower-like MoS2 microspheres[J]. Materials Letters,2015,148:67-70. doi: 10.1016/j.matlet.2015.02.027
    [27] ZHOU X P, XU B, LIN Z F, et al. Hydrothermal synthesis of flower-like MoS2 nanospheres for electrochemical supercapacitors[J]. Journal of Nanoscience and Nanotechnology,2014,14(9):7250-7254. doi: 10.1166/jnn.2014.8929
    [28] CHAO Y H, ZHU W S, WU X Y, et al. Application of graphene-like layered molybdenum disulfide and its excellent adsorption behavior for doxycycline antibiotic[J]. Chemical Engineering Journal,2014,243:60-67. doi: 10.1016/j.cej.2013.12.048
    [29] WANG X W, ZHANG Z A, CHEN Y Q, et al. Morphology-controlled synthesis of MoS2 nanostructures with different lithium storage properties[J]. Journal of Alloys and Compounds,2014,600:84-90. doi: 10.1016/j.jallcom.2014.02.127
    [30] HU K H, HU X G, XU Y F, et al. The effect of morphology on the tribological properties of MoS2 in liquid paraffin[J]. Tribology Letters,2010,40(1):155-165. doi: 10.1007/s11249-010-9651-z
    [31] 傅重源, 邢淞, 沈涛, 等. 水热法合成纳米花状二硫化钼及其微观结构表征[J]. 物理学报, 2015, 64(1):212-217. doi: 10.7498/aps.64.016102

    FU Chongyuan, XING Song, SHEN Tao, et al. Synthesis and characterization of flower-like MoS2 microspheres by hydrothermal method[J]. Acta Physica Sinica,2015,64(1):212-217(in Chinese). doi: 10.7498/aps.64.016102
    [32] ZHANG Z W, WANG P, WANG F, et al. Controlling dispersion and morphology of MoS2 nanospheres by hydrothermal method using SiO2 as template[J]. Chinese Journal of Chemical Engineering,2018,26(5):1229-1234. doi: 10.1016/j.cjche.2017.12.016
    [33] YIN Y H, XU P F, FANG J B, et al. Effect of fly ash cenosphere@SiO2 core-shell microspheres on physical properties and microstructures of vitrified bond diamond tools[J]. Diamond and Related Materials,2020,103:107703. doi: 10.1016/j.diamond.2020.107703
    [34] LI H, ZHANG Q, YAP C C R, et al. From bulk to monolayer MoS2: Evolution of Raman scattering[J]. Advanced Functional Materials,2012,22(7):1385-1390. doi: 10.1002/adfm.201102111
    [35] MESTL G, RUIZ P, DELMON B, et al. Oxygen-exchange properties of MoO3: An in situ Raman spectroscopy study[J]. Journal of Physical Chemistry,1994,98(44):11269-11275. doi: 10.1021/j100095a007
    [36] SANTOS E B, DE SOUZA E SILVA J M, MAZALI I O. Raman spectroscopy as a tool for the elucidation of nanoparticles with core-shell structure of TiO2 and MoO3[J]. Vibrational Spectroscopy,2010,54(2):89-92. doi: 10.1016/j.vibspec.2010.03.010
  • 加载中
图(13)
计量
  • 文章访问数:  650
  • HTML全文浏览量:  358
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-17
  • 修回日期:  2022-12-16
  • 录用日期:  2022-12-21
  • 网络出版日期:  2023-01-06
  • 刊出日期:  2023-11-01

目录

    /

    返回文章
    返回