Study on dynamic and static mechanical properties of glass beads/epoxy resin composites
-
摘要: 玻璃微珠浮力材料是一种由空心玻璃微珠(HGB)和环氧树脂制造的二相复合材料。玻璃微珠材料因其具有低密度、高强度、吸水率低等特点被广泛应用于建材、航海、航天等领域。其静态力学性能已经得到充分地研究,但对其动态力学性能的研究尚不能满足工程应用需求。采用INSTRON电子万能试验机和分离式霍普金森压杆(SHPB)对HGB/环氧树脂复合材料进行了准静态/动态加载情况下的压缩、劈拉、伪三轴压缩实验。结果表明,HGB/环氧树脂复合材料具有较强的应变率敏感性。其抗压强度、劈裂抗拉强度随应变率增加而增加,表现出应变率增强效应。其破坏形式也存在应变率敏感特性,随着应变率的提高其脆性增加。对比单轴压缩以及伪三轴压缩,发现材料在伪三轴压缩情况下较单轴压缩时抗压强度增强。
-
关键词:
- 空心玻璃微珠复合材料 /
- 力学性能 /
- 分离式霍普金森压杆(SHPB) /
- 伪三轴加载 /
- 应变率敏感性
Abstract: Glass bead buoyancy material is a two-phase composite material made of hollow glass bead (HGB) and epoxy resin. Glass bead has been widely used in building materials, navigation, aerospace and other fields because of its low density, high strength and low water absorption. Its static mechanical properties have been fully studied, but its dynamic mechanical properties are less studied, which are not enough to meet the needs of engineering applications. The compression, splitting and pseudo-triaxial compression experiments of HGB/epoxy resin composites under quasi-static/dynamic loading were carried out by INSTRON electronic universal testing machine and split Hopkinson pressure bar (SHPB). The results show that HGB/epoxy composite has strong strain rate sensitivity. The compressive strength and splitting resistance increase with the increase of strain rate, showing strain rate enhancement effect. The failure mode is also rate sensitive, and its brittleness increases with the increase of strain rate. Comparing uniaxial compression with pseudo triaxial compression, it is found that the compressive strength of the material under pseudo triaxial compression is higher than that under uniaxial compression. -
表 1 相近应变率下HGB/环氧树脂复合材料试件单轴压缩强度与伪三轴压缩强度
Table 1. Uniaxial compressive strength and pseudo-triaxial compressive strength of HGB epoxy composite specimens at similar strain rates
Test $\sigma _{\rm{U}}^{0.001}$ $\sigma _{\rm{P}}^{0.001}$ $\sigma _{\rm{U}}^{850}$ $\sigma _{\rm{P}}^{850}$ Yield stress (MPa) 89.86 94.02 114.15 145.76 Note: ${\sigma _X^Y}$: Y is the strain rate; X represents the loading mode of the specimen (${\sigma _{\rm{U}}}$ refers to the yield stress under uniaxial compression loading; ${\sigma _{\rm{P}}}$ refers to the yield stress under pseudo-triaxial compression loading). -
[1] 李乐, 于良民, 李昌诚, 等. 固体浮力材料及其性能研究现状[J]. 材料导报, 2012, 26(17):66-69. doi: 10.3969/j.issn.1005-023X.2012.17.014LI Le, YU Liangmin, LI Changcheng, et al. Solid buoyancy material and research status on its properties[J]. Materials Reports,2012,26(17):66-69(in Chinese). doi: 10.3969/j.issn.1005-023X.2012.17.014 [2] 苏航, 段正才, 冉安国, 等. 环氧树脂/中空玻璃微珠复合材料研究现状[J]. 工程塑料应用, 2022, 50(1):165-169. doi: 10.3969/j.issn.1001-3539.2022.01.029SU Hang, DUAN Zhengcai, RAN Anguo, et al. Research status of epoxy resin/hollow glass microsphere composites[J]. Engineering Plastics Application,2022,50(1):165-169(in Chinese). doi: 10.3969/j.issn.1001-3539.2022.01.029 [3] 周金磊. 空心玻璃微珠/环氧树脂复合材料的制备及性能研究[D]. 青岛: 中国海洋大学, 2013.ZHOU Jinlei. Preparation and properties of the hollow glass microsphere/epoxy resin composites[D]. Qingdao: Ocean University of China, 2013(in Chinese). [4] 刘艳妮, 徐伟, 王嵘. 空心玻璃微珠/环氧树脂复合材料制备及其性能研究[J]. 玻璃钢/复合材料, 2012, 227(6):52-56.LIU Yanni, XU Wei, WANG Rong. Study on hollow glass microspheres/epoxy resin composite materials preparation and its properties[J]. Fiber Reinforced Plastics/Composites,2012,227(6):52-56(in Chinese). [5] PANTEGHINI A, BARDELLA L. On the compressive strength of glass microballoons-based syntactic foams[J]. Mechanics of Materials,2015,82:63-77. [6] WOUTERSON E M, BOEY F, HU X. Specific properties and fracture toughness of syntactic foam: Effect of foam microstructures[J]. Composites Science and Technology,2005,65(11/12):1840-1850. [7] KIM H S, KHAMIS M A. Fracture and impact behaviours of hollow micro-sphere/epoxy resin composites[J]. Composites Part A: Applied Science & Manufacturing,2001,32(9):1311-1317. [8] SWETHA C, KUMAR R. Quasi-static uni-axial compression behaviour of hollow glass microspheres/epoxy based syntactic foams[J]. Materials & Design,2011,32(8-9):4152-4163. [9] 卢子兴. 复合泡沫塑料力学行为的研究综述[J]. 力学进展, 2004, 34(3):341-348. doi: 10.3321/j.issn:1000-0992.2004.03.005LU Zixing. A review of studies on the mechanical behavior of syntactic foamed platics[J]. Advances in Mechanics,2004,34(3):341-348(in Chinese). doi: 10.3321/j.issn:1000-0992.2004.03.005 [10] 胡传群, 曾黎明, 胡兵. 空心玻璃微珠在复合材料中的应用研究[J]. 绿色建筑, 2008, 24(3):46-48. doi: 10.3969/j.issn.1004-1672.2008.03.016HU Chuanqun, ZENG Liming, HU Bing. Applied study of cenosphere to composite[J]. Green Building,2008,24(3):46-48(in Chinese). doi: 10.3969/j.issn.1004-1672.2008.03.016 [11] 孙春宝, 汪群慧, 邢奕, 等. 深海高强安全浮力材料的研制及其表征[J]. 哈尔滨工业大学学报, 2006(11):2000-2002. doi: 10.3321/j.issn:0367-6234.2006.11.046SUN Chunbao, WANG Qunhui, XING Yi, et al. High intensity deep sea buoyancy material made from polymer filled with hollow micro-glass ball[J]. Journal of Harbin Institute of Technology,2006(11):2000-2002(in Chinese). doi: 10.3321/j.issn:0367-6234.2006.11.046 [12] 周金磊, 戴金辉, 吴平伟, 等. 环氧树脂基固体浮力材料的制备及性能研究[J]. 材料开发与应用, 2013, 28(2): 59-65.ZHOU Jinlei, DAI Jinhui, WU Pingwei, et al. Research on preparation and properties of solid buoyancy materials based on epoxy resins[J]. Development and Application of Materials, 2013, 28(2): 59-65(in Chinese). [13] AFOLABI O A, KANNY K, MOHAN T P. Processing of hollow glass microspheres (HGM) filled epoxy syntactic foam composites with improved structural characteristics[J]. Science and Engineering of Composite Materials,2021,28(1):116-127. doi: 10.1515/secm-2021-0011 [14] YUNG K C, ZHU B L, YUE T M, et al. Preparation and properties of hollow glass microsphere-filled epoxy-matrix composites[J]. Composites Science & Technology,2009,69(2):260-264. [15] 孙春宝, 邢奕, 王啟锋. 空心玻璃微珠填充聚合物合成深海高强浮力材料[J]. 北京科技大学学报, 2006, 28(6):554-558. doi: 10.3321/j.issn:1001-053X.2006.06.011SUN Chunbao, XING Yi, WANG Qifeng. High-strength deep-sea buoyancy material made of polymer filled with hollow glass micro-beads[J]. Chinese Journal of Engineering,2006,28(6):554-558(in Chinese). doi: 10.3321/j.issn:1001-053X.2006.06.011 [16] 史利利, 李瑞, 胡永玲. 国内空心玻璃微珠/环氧树脂基固体浮力材料研究进展[J]. 化学与粘合, 2020, 42(2):137-139. doi: 10.3969/j.issn.1001-0017.2020.02.016SHI Lili, LI Rui, HU Yongling. Research progress in the hollow glass microsphere/epoxy resin based solid buoyancy materials in China[J]. Chemistry and Adhesion,2020,42(2):137-139(in Chinese). doi: 10.3969/j.issn.1001-0017.2020.02.016 [17] 王彩华. 空心玻璃微珠/环氧树脂复合材料的黏弹性能研究[D]. 秦皇岛: 燕山大学, 2018.WANG Caihua. The viscoelastic research on hollow glass beads/epoxy resin composite[D]. Qinhuangdao: Yanshan University, 2018(in Chinese). [18] 邓小亮, 周欣, 王凯莉, 等. PET/空心玻璃微珠复合材料的制备及性能研究[J]. 聚酯工业, 2019, 32(6):28-30. doi: 10.3969/j.issn.1008-8261.2019.06.008DENG Xiaoliang, ZHOU Xin, WANG Kaili, et al. Preparation and properties of PET/hollow glass bead composite[J]. Polyester Industry,2019,32(6):28-30(in Chinese). doi: 10.3969/j.issn.1008-8261.2019.06.008 [19] 鄢柳柳, 徐任信, 王钧, 等. 碳纤维增强轻质耐压复合材料的制备及性能研究[J]. 玻璃钢/复合材料, 2016(7):8-41.YAN Liuliu, XU Renxin, WANG Jun, et al. Study on preparation and property of carbon fiber reinforced lightweight compression-resistance composites[J]. Composites Science and Engineering,2016(7):8-41(in Chinese). [20] 王跃平, 杨东杰, 马志超, 等. 全海深浮力材料的研究与制备[J]. 材料开发与应用, 2021, 36(4):57-61. doi: 10.19515/j.cnki.1003-1545.2021.04.010WANG Yueping, YANG Dongjie, MA Zhichao, et al. Study on and preparation of full ocean depth buoyancy materials[J]. Development and Application of Materials,2021,36(4):57-61(in Chinese). doi: 10.19515/j.cnki.1003-1545.2021.04.010 [21] 丁雪佳, 李亮, 余鼎声, 等. 空心玻璃微珠填充PP复合材料的结构与性能研究[J]. 中国塑料, 2002, 16(12):43-46. doi: 10.3321/j.issn:1001-9278.2002.12.009DING Xuejia, LI Liang, YU Dingsheng, et al. Structure and properties of hollow microbeads filled PP[J]. China Plastics,2002,16(12):43-46(in Chinese). doi: 10.3321/j.issn:1001-9278.2002.12.009 [22] 张洋, 李俊杰, 王俊, 等. 微珠泡沫填充玻璃纤维增强聚合物(GFRP)十字格构柱准静态压缩性能[J]. 材料科学与工程学报, 2020, 38(6):924-927, 994. doi: 10.14136/j.cnki.issn1673-2812.2020.06.010ZHANG Yang, LI Junjie, WANG Jun, et al. Quasi-static compression performance of GFRP cross-grid columns filled with microbead foam[J]. Journal of Materials Science and Engineering,2020,38(6):924-927, 994(in Chinese). doi: 10.14136/j.cnki.issn1673-2812.2020.06.010 [23] 支超, 龙海如. 经编间隔织物/空心玻璃微珠增强环氧树脂基复合材料的弯曲性能[J]. 东华大学学报(自然科学版), 2016, 42(3):338-343, 349.ZHI Chao, LONG Hairu. Flexural properties of epoxy resin matrix composites reinforced with warp knitted spacer fabric/hollow glass microballoons[J]. Journal of Donghua University (Natural Science),2016,42(3):338-343, 349(in Chinese). [24] 宋力, 胡时胜. SHPB数据处理中的二波法与三波法[J]. 爆炸与冲击, 2005, 25(4):368-373. doi: 10.3321/j.issn:1001-1455.2005.04.014SONG Li, HU Shisheng. Two-wave and three-wave method in SHPB date processing[J]. Explosion and Shock Waves,2005,25(4):368-373(in Chinese). doi: 10.3321/j.issn:1001-1455.2005.04.014 [25] 中华人民共和国住房和城乡建设部, 中华人民共和国国家质量监督检验检疫总局. 工程岩体试验方法标准: GB/T 50266—2013[S]. 北京: 中国计划出版社, 2013.Ministry of Housing and Urban-Rural Development of the People's Republic of China, General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Standard for test methods of engineering rock mass: GB/T 50266—2013[S]. Beijing: China Planning Press, 2013(in Chinese). [26] 曲嘉. 钢纤维混凝土劈拉强度的实验研究[D]. 哈尔滨: 哈尔滨工程大学, 2010.QU Jia. The experimental study on the split strength of SFRC[D]. Harbin: Harbin Engineering University, 2010(in Chinese). -