留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

玻璃微珠/环氧树脂复合材料的动静态力学性能研究

刘鑫 袁野 曲嘉

刘鑫, 袁野, 曲嘉. 玻璃微珠/环氧树脂复合材料的动静态力学性能研究[J]. 复合材料学报, 2023, 40(7): 3874-3880. doi: 10.13801/j.cnki.fhclxb.20220930.003
引用本文: 刘鑫, 袁野, 曲嘉. 玻璃微珠/环氧树脂复合材料的动静态力学性能研究[J]. 复合材料学报, 2023, 40(7): 3874-3880. doi: 10.13801/j.cnki.fhclxb.20220930.003
LIU Xin, YUAN Ye, QU Jia. Study on dynamic and static mechanical properties of glass beads/epoxy resin composites[J]. Acta Materiae Compositae Sinica, 2023, 40(7): 3874-3880. doi: 10.13801/j.cnki.fhclxb.20220930.003
Citation: LIU Xin, YUAN Ye, QU Jia. Study on dynamic and static mechanical properties of glass beads/epoxy resin composites[J]. Acta Materiae Compositae Sinica, 2023, 40(7): 3874-3880. doi: 10.13801/j.cnki.fhclxb.20220930.003

玻璃微珠/环氧树脂复合材料的动静态力学性能研究

doi: 10.13801/j.cnki.fhclxb.20220930.003
基金项目: 国家自然科学基金(11972007)
详细信息
    通讯作者:

    曲嘉,博士,副教授,博士生导师,研究方向为冲击动力学 E-mail: qujia@hrbeu.edu.cn

  • 中图分类号: TB332

Study on dynamic and static mechanical properties of glass beads/epoxy resin composites

Funds: National Natural Science Foundation of China (11972007)
  • 摘要: 玻璃微珠浮力材料是一种由空心玻璃微珠(HGB)和环氧树脂制造的二相复合材料。玻璃微珠材料因其具有低密度、高强度、吸水率低等特点被广泛应用于建材、航海、航天等领域。其静态力学性能已经得到充分地研究,但对其动态力学性能的研究尚不能满足工程应用需求。采用INSTRON电子万能试验机和分离式霍普金森压杆(SHPB)对HGB/环氧树脂复合材料进行了准静态/动态加载情况下的压缩、劈拉、伪三轴压缩实验。结果表明,HGB/环氧树脂复合材料具有较强的应变率敏感性。其抗压强度、劈裂抗拉强度随应变率增加而增加,表现出应变率增强效应。其破坏形式也存在应变率敏感特性,随着应变率的提高其脆性增加。对比单轴压缩及伪三轴压缩,发现材料在伪三轴压缩情况下较单轴压缩时抗压强度增强。

     

  • 图  1  空心玻璃微珠(HGB)/环氧树脂复合材料准静态单轴压缩试件: (a) 试件夹持方式;(b) 试件破坏模式

    Figure  1.  Quasi-static uniaxial compression specimen of hollow glass bead (HGB)/epoxy resin composite: (a) Clamping mode of specimen; (b) Failure mode of specimen

    图  2  HGB/环氧树脂复合材料准静态劈拉试件:(a) 试件夹持方式;(b) 试件破坏模式

    Figure  2.  Quasi-static splitting specimen of HGB/epoxy resin composite: (a) Clamping mode of specimen; (b) Failure mode of specimen

    图  3  HGB/环氧树脂复合材料伪三轴压缩试件:(a) 夹具;(b) 试件组装图

    Figure  3.  HGB/epoxy resin composite pseudo-triaxial compression specimen: (a) Fixture; (b) Assembly diagram of specimen

    图  4  分离式霍普金森压杆(SHPB)装置示意图

    Figure  4.  Schematic diagram of split Hopkinson pressure bar (SHPB) device

    图  5  HGB/环氧树脂复合材料动态实验试件破坏模式:(a) 单轴压缩试件;(b) 劈拉试件;(c) 伪三轴压缩试件

    Figure  5.  Failure modes of HGB/epoxy resin composite specimen in dynamic experiment: (a) Uniaxial compression specimen; (b) Splitting specimen; (c) Pseudo-triaxial compression specimen

    图  6  HGB/环氧树脂复合材料试件在应变率为850 s−1实验中达到应力平衡

    Figure  6.  Stress equilibrium obtained in the HGB/epoxy composite specimens at strain rate of 850 s−1

    图  7  10−3 s−1应变率下不同HGB/环氧树脂复合材料试件的单轴压缩应力-应变曲线

    Figure  7.  Stress-strain curves of different HGB/epoxy composite specimens under uniaxial compression at strain rates of 10−3 s−1

    图  8  不同应变率下HGB/环氧树脂复合材料试件的单轴压缩应力-应变曲线

    Figure  8.  Stress-strain curves of HGB/epoxy composite specimens under uniaxial compression at different strain rates

    图  9  HGB/环氧树脂复合材料试件单轴压缩强度-应变率曲线

    Figure  9.  Uniaxial compression strength-strain rate curve of HGB/epoxy resin composite specimen

    图  10  HGB/环氧树脂复合材料试件准静态劈拉实验载荷-位移曲线

    Figure  10.  Force-displacement curve of HGB/epoxy composite specimen in quasi-static splitting experiment

    图  11  HGB/环氧树脂复合材料试件动态劈拉加载下应力-时间曲线

    Figure  11.  Stress-time curves of HGB/epoxy composite specimens under dynamic splitting loading

    图  12  HGB/环氧树脂复合材料试件劈裂抗拉强度-应变率曲线

    Figure  12.  Splitting tensile strength-strain rate curve ofHGB/epoxy composite specimen

    图  13  不同应变率下HGB/环氧树脂复合材料伪三轴压缩试件应力-应变曲线

    Figure  13.  Stress-strain curves of HGB/epoxy composite specimen under pseudo-triaxial compression with different strain rates

    图  14  3种实验条件下,HGB/环氧树脂复合材料试件上一点应力状态

    Figure  14.  Stress state at a point on the HGB/epoxy composite specimen under 3 experimental conditions

    σ1-σ3—Principal stress in three directions

    表  1  相近应变率下HGB/环氧树脂复合材料试件单轴压缩强度与伪三轴压缩强度

    Table  1.   Uniaxial compressive strength and pseudo-triaxial compressive strength of HGB epoxy composite specimens at similar strain rates

    Test$\sigma _{\rm{U}}^{0.001}$$\sigma _{\rm{P}}^{0.001}$$\sigma _{\rm{U}}^{850}$$\sigma _{\rm{P}}^{850}$
    Yield stress/MPa89.8694.02114.15145.76
    Notes: ${\sigma _X^Y}$: Y—Strain rate; X—Loading mode of the specimen (${\sigma _{\rm{U}}}$—Yield stress under uniaxial compression loading; ${\sigma _{\rm{P}}}$—Yield stress under pseudo-triaxial compression loading).
    下载: 导出CSV
  • [1] 李乐, 于良民, 李昌诚, 等. 固体浮力材料及其性能研究现状[J]. 材料导报, 2012, 26(17):66-69. doi: 10.3969/j.issn.1005-023X.2012.17.014

    LI Le, YU Liangmin, LI Changcheng, et al. Solid buoyancy material and research status on its properties[J]. Materials Reports,2012,26(17):66-69(in Chinese). doi: 10.3969/j.issn.1005-023X.2012.17.014
    [2] 苏航, 段正才, 冉安国, 等. 环氧树脂/中空玻璃微珠复合材料研究现状[J]. 工程塑料应用, 2022, 50(1):165-169. doi: 10.3969/j.issn.1001-3539.2022.01.029

    SU Hang, DUAN Zhengcai, RAN Anguo, et al. Research status of epoxy resin/hollow glass microsphere composites[J]. Engineering Plastics Application,2022,50(1):165-169(in Chinese). doi: 10.3969/j.issn.1001-3539.2022.01.029
    [3] 周金磊. 空心玻璃微珠/环氧树脂复合材料的制备及性能研究[D]. 青岛: 中国海洋大学, 2013.

    ZHOU Jinlei. Preparation and properties of the hollow glass microsphere/epoxy resin composites[D]. Qingdao: Ocean University of China, 2013(in Chinese).
    [4] 刘艳妮, 徐伟, 王嵘. 空心玻璃微珠/环氧树脂复合材料制备及其性能研究[J]. 玻璃钢/复合材料, 2012, 227(6):52-56.

    LIU Yanni, XU Wei, WANG Rong. Study on hollow glass microspheres/epoxy resin composite materials preparation and its properties[J]. Fiber Reinforced Plastics/Composites,2012,227(6):52-56(in Chinese).
    [5] PANTEGHINI A, BARDELLA L. On the compressive strength of glass microballoons-based syntactic foams[J]. Mechanics of Materials,2015,82:63-77.
    [6] WOUTERSON E M, BOEY F, HU X. Specific properties and fracture toughness of syntactic foam: Effect of foam microstructures[J]. Composites Science and Technology,2005,65(11/12):1840-1850.
    [7] KIM H S, KHAMIS M A. Fracture and impact behaviours of hollow micro-sphere/epoxy resin composites[J]. Composites Part A: Applied Science & Manufacturing,2001,32(9):1311-1317.
    [8] SWETHA C, KUMAR R. Quasi-static uni-axial compression behaviour of hollow glass microspheres/epoxy based syntactic foams[J]. Materials & Design,2011,32(8-9):4152-4163.
    [9] 卢子兴. 复合泡沫塑料力学行为的研究综述[J]. 力学进展, 2004, 34(3):341-348. doi: 10.3321/j.issn:1000-0992.2004.03.005

    LU Zixing. A review of studies on the mechanical behavior of syntactic foamed platics[J]. Advances in Mechanics,2004,34(3):341-348(in Chinese). doi: 10.3321/j.issn:1000-0992.2004.03.005
    [10] 胡传群, 曾黎明, 胡兵. 空心玻璃微珠在复合材料中的应用研究[J]. 绿色建筑, 2008, 24(3):46-48. doi: 10.3969/j.issn.1004-1672.2008.03.016

    HU Chuanqun, ZENG Liming, HU Bing. Applied study of cenosphere to composite[J]. Green Building,2008,24(3):46-48(in Chinese). doi: 10.3969/j.issn.1004-1672.2008.03.016
    [11] 孙春宝, 汪群慧, 邢奕, 等. 深海高强安全浮力材料的研制及其表征[J]. 哈尔滨工业大学学报, 2006(11):2000-2002. doi: 10.3321/j.issn:0367-6234.2006.11.046

    SUN Chunbao, WANG Qunhui, XING Yi, et al. High intensity deep sea buoyancy material made from polymer filled with hollow micro-glass ball[J]. Journal of Harbin Institute of Technology,2006(11):2000-2002(in Chinese). doi: 10.3321/j.issn:0367-6234.2006.11.046
    [12] 周金磊, 戴金辉, 吴平伟, 等. 环氧树脂基固体浮力材料的制备及性能研究[J]. 材料开发与应用, 2013, 28(2): 59-65.

    ZHOU Jinlei, DAI Jinhui, WU Pingwei, et al. Research on preparation and properties of solid buoyancy materials based on epoxy resins[J]. Development and Application of Materials, 2013, 28(2): 59-65(in Chinese).
    [13] AFOLABI O A, KANNY K, MOHAN T P. Processing of hollow glass microspheres (HGM) filled epoxy syntactic foam composites with improved structural characteristics[J]. Science and Engineering of Composite Materials,2021,28(1):116-127. doi: 10.1515/secm-2021-0011
    [14] YUNG K C, ZHU B L, YUE T M, et al. Preparation and properties of hollow glass microsphere-filled epoxy-matrix composites[J]. Composites Science & Technology,2009,69(2):260-264.
    [15] 孙春宝, 邢奕, 王啟锋. 空心玻璃微珠填充聚合物合成深海高强浮力材料[J]. 北京科技大学学报, 2006, 28(6):554-558. doi: 10.3321/j.issn:1001-053X.2006.06.011

    SUN Chunbao, XING Yi, WANG Qifeng. High-strength deep-sea buoyancy material made of polymer filled with hollow glass micro-beads[J]. Chinese Journal of Engineering,2006,28(6):554-558(in Chinese). doi: 10.3321/j.issn:1001-053X.2006.06.011
    [16] 史利利, 李瑞, 胡永玲. 国内空心玻璃微珠/环氧树脂基固体浮力材料研究进展[J]. 化学与粘合, 2020, 42(2):137-139. doi: 10.3969/j.issn.1001-0017.2020.02.016

    SHI Lili, LI Rui, HU Yongling. Research progress in the hollow glass microsphere/epoxy resin based solid buoyancy materials in China[J]. Chemistry and Adhesion,2020,42(2):137-139(in Chinese). doi: 10.3969/j.issn.1001-0017.2020.02.016
    [17] 王彩华. 空心玻璃微珠/环氧树脂复合材料的黏弹性能研究[D]. 秦皇岛: 燕山大学, 2018.

    WANG Caihua. The viscoelastic research on hollow glass beads/epoxy resin composite[D]. Qinhuangdao: Yanshan University, 2018(in Chinese).
    [18] 邓小亮, 周欣, 王凯莉, 等. PET/空心玻璃微珠复合材料的制备及性能研究[J]. 聚酯工业, 2019, 32(6):28-30. doi: 10.3969/j.issn.1008-8261.2019.06.008

    DENG Xiaoliang, ZHOU Xin, WANG Kaili, et al. Preparation and properties of PET/hollow glass bead composite[J]. Polyester Industry,2019,32(6):28-30(in Chinese). doi: 10.3969/j.issn.1008-8261.2019.06.008
    [19] 鄢柳柳, 徐任信, 王钧, 等. 碳纤维增强轻质耐压复合材料的制备及性能研究[J]. 玻璃钢/复合材料, 2016(7):8-41.

    YAN Liuliu, XU Renxin, WANG Jun, et al. Study on preparation and property of carbon fiber reinforced lightweight compression-resistance composites[J]. Composites Science and Engineering,2016(7):8-41(in Chinese).
    [20] 王跃平, 杨东杰, 马志超, 等. 全海深浮力材料的研究与制备[J]. 材料开发与应用, 2021, 36(4):57-61. doi: 10.19515/j.cnki.1003-1545.2021.04.010

    WANG Yueping, YANG Dongjie, MA Zhichao, et al. Study on and preparation of full ocean depth buoyancy materials[J]. Development and Application of Materials,2021,36(4):57-61(in Chinese). doi: 10.19515/j.cnki.1003-1545.2021.04.010
    [21] 丁雪佳, 李亮, 余鼎声, 等. 空心玻璃微珠填充PP复合材料的结构与性能研究[J]. 中国塑料, 2002, 16(12):43-46. doi: 10.3321/j.issn:1001-9278.2002.12.009

    DING Xuejia, LI Liang, YU Dingsheng, et al. Structure and properties of hollow microbeads filled PP[J]. China Plastics,2002,16(12):43-46(in Chinese). doi: 10.3321/j.issn:1001-9278.2002.12.009
    [22] 张洋, 李俊杰, 王俊, 等. 微珠泡沫填充玻璃纤维增强聚合物(GFRP)十字格构柱准静态压缩性能[J]. 材料科学与工程学报, 2020, 38(6):924-927, 994. doi: 10.14136/j.cnki.issn1673-2812.2020.06.010

    ZHANG Yang, LI Junjie, WANG Jun, et al. Quasi-static compression performance of GFRP cross-grid columns filled with microbead foam[J]. Journal of Materials Science and Engineering,2020,38(6):924-927, 994(in Chinese). doi: 10.14136/j.cnki.issn1673-2812.2020.06.010
    [23] 支超, 龙海如. 经编间隔织物/空心玻璃微珠增强环氧树脂基复合材料的弯曲性能[J]. 东华大学学报(自然科学版), 2016, 42(3):338-343, 349.

    ZHI Chao, LONG Hairu. Flexural properties of epoxy resin matrix composites reinforced with warp knitted spacer fabric/hollow glass microballoons[J]. Journal of Donghua University (Natural Science),2016,42(3):338-343, 349(in Chinese).
    [24] 宋力, 胡时胜. SHPB数据处理中的二波法与三波法[J]. 爆炸与冲击, 2005, 25(4):368-373. doi: 10.3321/j.issn:1001-1455.2005.04.014

    SONG Li, HU Shisheng. Two-wave and three-wave method in SHPB date processing[J]. Explosion and Shock Waves,2005,25(4):368-373(in Chinese). doi: 10.3321/j.issn:1001-1455.2005.04.014
    [25] 中华人民共和国住房和城乡建设部. 工程岩体试验方法标准: GB/T 50266—2013[S]. 北京: 中国计划出版社, 2013.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Standard for test methods of engineering rock mass: GB/T 50266—2013[S]. Beijing: China Planning Press, 2013(in Chinese).
    [26] 曲嘉. 钢纤维混凝土劈拉强度的实验研究[D]. 哈尔滨: 哈尔滨工程大学, 2010.

    QU Jia. The experimental study on the split strength of SFRC[D]. Harbin: Harbin Engineering University, 2010(in Chinese).
  • 加载中
图(14) / 表(1)
计量
  • 文章访问数:  769
  • HTML全文浏览量:  619
  • PDF下载量:  78
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-21
  • 修回日期:  2022-08-28
  • 录用日期:  2022-09-20
  • 网络出版日期:  2022-10-06
  • 刊出日期:  2023-07-15

目录

    /

    返回文章
    返回