留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

MWCNT/PEDOT复合材料的微观结构和热电性能

李重阳 宋小勇 陈莉莉 陶颖 陈志权 赵宾

李重阳, 宋小勇, 陈莉莉, 等. MWCNT/PEDOT复合材料的微观结构和热电性能[J]. 复合材料学报, 2022, 40(0): 1-12
引用本文: 李重阳, 宋小勇, 陈莉莉, 等. MWCNT/PEDOT复合材料的微观结构和热电性能[J]. 复合材料学报, 2022, 40(0): 1-12
Chongyang LI, Xiaoyong SONG, Lili CHEN, Ying TAO, Zhiquan CHEN, Bin ZHAO. Microstructure and thermoelectric properties of MWCNT/PEDOT composites[J]. Acta Materiae Compositae Sinica.
Citation: Chongyang LI, Xiaoyong SONG, Lili CHEN, Ying TAO, Zhiquan CHEN, Bin ZHAO. Microstructure and thermoelectric properties of MWCNT/PEDOT composites[J]. Acta Materiae Compositae Sinica.

MWCNT/PEDOT复合材料的微观结构和热电性能

基金项目: 国家自然科学基金 (11805295; 11665017)
详细信息
    通讯作者:

    李重阳,博士,讲师,研究方向为正电子湮没谱学及多孔材料微观结构表征 E-mail: lichongyang@ncwu.edu.cn

  • 中图分类号: O59;O631.2+2;O631.2+3

Microstructure and thermoelectric properties of MWCNT/PEDOT composites

  • 摘要: 热电转换技术能将大量的废弃热能转换为电能以重新利用,是一种绿色能源转换技术,可以有效提高能源利用效率,缓解煤炭、石油等主要化石类能源过度开采、使用带来的能源危机及环境污染问题,因此受到科研工作者的广泛关注,是近年来的研究热点。基于此,本文以电子型导电高聚物中机能较优的聚(3,4-乙烯二氧噻吩)(PEDOT)作为研究主体,通过化学原位氧化聚合将多壁碳纳米管(MWCNT)复合到载体中得到MWCNT/PEDOT复合材料。利用X射线衍射(XRD)、拉曼、透射电镜(TEM)及正电子湮没寿命(PAL)等方法对MWCNT/PDOT复合材料的形貌和微观结构进行了系统研究,研究表明,当MWCNT含量高于24.9wt%时,复合材料中出现MWCNT团聚现象,其分散性变差。同时,MWCNT/PEDOT复合材料的热电性能测试结果显示,未掺杂PEDOT的电导率仅为7.5$ \mathrm{S}\cdot{\mathrm{m}}^{-1} $,而MWCNT含量为30.1wt%时,该复合材料的电导率高达566.59$ \mathrm{S}\cdot{\mathrm{m}}^{-1} $,提高近76倍。同时,30.1wt% MWCNT/PEDOT的功率因子$ (814.3\times {10}^{-4}\text{μ}\mathrm{W}\cdot{\mathrm{m}}^{-1}\cdot{\mathrm{K}}^{-2}) $相对于未掺杂PEDOT$ (14.5\times {10}^{-4}\text{μ}\mathrm{W}\cdot{\mathrm{m}}^{-1}\cdot{\mathrm{K}}^{-2}) $提高了56倍,这主要是由于PEDOT分子链与MWCNT掺杂物间π-π相互作用及MWCNT的高导电性。随着MWCNT含量的增加,PAL测试结果中τ1的下降证实了该复合材料中MWCNT与PEDOT间界面变小或者界面间相互作用减弱,导致其热导率相对于未掺杂PEDOT有一定的上升,但远远低于功率因子的升高。最终,该MWCNT/PEDOT复合材料的热电优值(即热电材料ZT值)由0.015$ \times {10}^{-4} $升至0.45$ \times {10}^{-4} $,增加了近30倍。结果表明,掺杂的高电导率MWCNT能够极大地提高PEDOT类电子型导电聚合物的热电性能。

     

  • 图  1  多壁碳纳米管(MWCNT)含量为0wt%(a)、11.4wt%(b)、19.7wt%(c)、24.9wt%(d)和30.1wt%(e)的MWCNT/聚(3,4-乙烯二氧噻吩)(PEDOT)复合材料的XRD谱图

    Figure  1.  XRD patterns of 0wt%(a), 11.4wt%(b), 19.7wt%(c), 24.9wt%(d) and 30.1wt%(e) multiwall carbon nanotubes (MWCNT) contents of MWCNT/ poly (3, 4-ethylenedioxythiophene) (PEDOT) composites

    图  2  MWCNT含量为0wt%、11.4wt%、19.7wt%、24.9wt%和30.1wt% MWCNT /PEDOT复合材料的拉曼光谱图,其中(b)为(a)的局部放大图

    Figure  2.  Raman spectrogram of 0wt%, 11.4wt%, 19.7wt%, 24.9wt% and 30.1wt% contents of MWCNT/PEDOT composites, where, (b) is the local magnified view of (a)

    图  3  MWCNT含量为0wt%(a)、11.4wt%(b)、19.7wt%(c)、24.9wt%(d)和30.1wt%(e)MWCNT/ PEDOT复合材料和纯净MWCNT(f)的高分辨透射电镜图

    Figure  3.  High resolution transmission electron microscopy of 0wt%(a), 11.4wt%(b), 19.7wt%(c), 24.9wt%(d) and 30.1wt%(e) MWCNT contents of MWCNT/PEDOT composites and pure MWCNT

    图  4  不同MWCNT含量的MWCNT/PEDOT复合材料的正电子寿命$ {\tau }_{1} $$ {\tau }_{2} $以及对应强度$ {I}_{1} $$ {I}_{2} $的变化曲线

    Figure  4.  Variation of positron lifetime $ {\tau }_{1} $, $ {\tau }_{2} $ and intensity $ {I}_{1} $, $ {I}_{2} $ measured for MWCNT/PEDOT as a function of MWCNT content

    图  5  不同MWCNT含量的MWCNT/PEDOT复合材料冷压后电导率(a)、塞贝克系数(b)和功率因子(c)随测试温度的变化曲线

    Figure  5.  The variation of electrical conductivity (a), Seebeck coefficient (b) and power factor (c) for MWCNT/PEDOT composites with various MWCNT contents as a function of temperature

    图  6  室温下不同MWCNT含量的MWCNT/PEDOT复合材料的电导率(a)、塞贝克系数(b)和功率因子(c)的变化曲线

    Figure  6.  Electrical conductivity (a), seebeck coefficient (b) and power factor (c) for MWCNT/PEDOT composites with various MWCNT contents measured at room temperature

    图  7  不同MWCNT含量的MWCNT/PEDOT复合材料中热扩散系数随测试温度的变化(a);室温下不同MWCNT含量的MWCNT/PEDOT复合材料的晶格热导率(b)、热导率(c)和ZT值(d)变化曲线

    Figure  7.  Thermal diffusivity(a) for the MWCNT/PEDOT composites with various MWCNT contents as a function of temperature, lattice thermal conductivity(b), thermal conductivity(c) and ZT value (d) for the MWCNT/PEDOT composites with various MWCNT contents at room temperature.

  • [1] CHATTERJEE K, GHOSH T K. Thermoelectric materials for textile applications[J]. Molecules,2021,26(11):3154-3165. doi: 10.3390/molecules26113154
    [2] PARK D, KIM M, KIM J. High-performance PANI-coated Ag2Se nanowire and PVDF thermoelectric composite film for flexible energy harvesting[J]. Journal of Alloys and Compounds,2021,884:161098. doi: 10.1016/j.jallcom.2021.161098
    [3] ZHOU X Y, YAN Y C, LU X et al. Routes for high-performance thermoelectric materials[J]. Materials Today,2018,21(9):974-988. doi: 10.1016/j.mattod.2018.03.039
    [4] BELL L E. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems[J]. Science,2008,321(5895):1457-1461. doi: 10.1126/science.1158899
    [5] BAKKER F L, SLACHTER A, ADAM J P et al. Interplay of Peltier and Seebeck effects in nanoscale nonlocal spin valves[J]. Physical Review Letters,2010,105(13):136601. doi: 10.1103/PhysRevLett.105.136601
    [6] YANG J H, CAILLAT T. Thermoelectric materials for space and automotive power generation[J]. Mrs Bulletin,2006,31(3):224-229. doi: 10.1557/mrs2006.49
    [7] CHEN Z G, HAN G, YANG L et al. Nanostructured thermoelectric materials: Current research and future challenge[J]. Progress in Natural Science-Materials International,2012,22(6):535-549. doi: 10.1016/j.pnsc.2012.11.011
    [8] SHI X L, ZHENG K, HONG M et al. Boosting the thermoelectric performance of p-type heavily Cu-doped polycrystalline SnSe via inducing intensive crystal imperfections and defect phonon scattering[J]. Chemical science,2018,9(37):7376-7389. doi: 10.1039/C8SC02397B
    [9] SHI X L, ZHENG K, LIU W D et al. Realizing high thermoelectric performance in n-type highly distorted Sb-doped SnSe microplates via tuning high electron concentration and inducing intensive crystal defects[J]. Advanced Energy Materials,2018,8(21):1800775. doi: 10.1002/aenm.201800775
    [10] SNYDER G J, TOBBER E S. Complex thermoelectric materials[J]. Nature Materials,2008,7(2):105-114. doi: 10.1038/nmat2090
    [11] ZHAO L D, LO S H, ZHANG Y S et al. Ultralow thermal conductivity and high thermoelectric Fig. of merit in SnSe crystals[J]. Nature,2014,508(7496):373-377. doi: 10.1038/nature13184
    [12] SOOTSMAN J R, CHUNG D Y, KANATZIDIS M G. New and old concepts in thermoelectric materials[J]. Angewandte Chemie,2009,48(46):8616-8639. doi: 10.1002/anie.200900598
    [13] MCGRAIL B T, SEHIRLIOGLU A, PENTZER E. Polymer composites for thermoelectric applications[J]. Angewandte Chemie,2015,54(6):1710-1723. doi: 10.1002/anie.201408431
    [14] VENKATASUBRAMANIAN R. Lattice thermal conductivity reduction and phonon localizationlike behavior in superlattice structures[J]. Physical Review B,2000,61(4):3091-3097. doi: 10.1103/PhysRevB.61.3091
    [15] TIAN Z, GARG J, ESFARJANI K et al. Phonon conduction in PbSe, PbTe, and PbTe1-xSex from first-principles calculations[J], Physical Review B, 2012, 85 (18).
    [16] 王艳, 陈南迪, 杨陈等. 二维材料XTe2(X = Pd, Pt)热电性能的第一性原理计算[J]. 物理学报, 2021, 70(11):116301. doi: 10.7498/aps.70.20201939

    WANG Y, CHEN N D, YANG C et al. Thermoelectric transport properties of XTe2 (X = Pd, Pt) two-dimensional materials calculations[J]. Acta Physics Sinica,2021,70(11):116301(in Chinese). doi: 10.7498/aps.70.20201939
    [17] HE H F, LI X F, CHEN Z Q et al. Interplay between point defects and thermal conductivity of chemically synthesized Bi2Te3 nanocrystals studied by positron annihilation[J]. The Journal of Physical Chemistry C,2014,118(38):22389-22394. doi: 10.1021/jp508085a
    [18] WU D, ZHAO L D, HAO S Q et al. Origin of the high performance in GeTe-based thermoelectric materials upon Bi2Te3 doping[J]. Journal of the American Chemical Society,2014,136(32):11412-11419. doi: 10.1021/ja504896a
    [19] 范人杰, 江先燕, 陶奇睿等. In1+xTe化合物的结构及热电性能研究[J], 物理学报, 2021, 70 (13): 137102.

    FAN R J, JIANG X Y, TAO Q R, et al. Structure and thermoelectric properties of In1+xTe compounds[I], Acta Physical Sinica, 2021, 70(13): 137102. (in Chinese)
    [20] WANG F Q, ZHANG S H, YU J B et al. Thermoelectric properties of single-layered SnSe sheet[J]. Nanoscale,2015,7(38):15962-15970. doi: 10.1039/C5NR03813H
    [21] 王作成, 李涵, 苏贤礼等. In0.3Co4Sb12-xSex方钴矿热电材料的制备和热电性能[J]. 物理学报, 2011, 60(2):027202. doi: 10.7498/aps.60.027202

    WANG Z C, LI H, SU X L et al. Synthesis and thermoelectric properties of thermoelectric materials of the skutterudites In0.3Co4Sb12- xSex[J]. Acta Physical Sinica,2011,60(2):027202(in Chinese). doi: 10.7498/aps.60.027202
    [22] APPEL O, GELBSTEIN Y. A Comparison Between the effects of Sb and Bi doping on the thermoelectric properties of the Ti0.3Zr0.35Hf0.35NiSn Half-Heusler Alloy[J]. Journal of Electronic Materials,2013,43(6):1976-1982.
    [23] ZHOU H, CHUA M H, ZHU Q et al. High-performance PEDOT: PSS-based thermoelectric composites[J], Composites Communications, 2021, 27 100877.
    [24] HAN J F, GANLEY C, HU Q et al. Using preformed meisenheimer complexes as dopants for n-type organic thermoelectrics with high Seebeck coefficients and power factors[J]. Advanced Functional Materials,2021,31(18):2010567. doi: 10.1002/adfm.202010567
    [25] DENG L, CHEN G M. Recent progress in tuning polymer oriented microstructures for enhanced thermoelectric performance[J], Nano Energy, 2021, 80 105448.
    [26] KAUL P B, DAY K A, ABRAMSON A R. Application of the three omega method for the thermal conductivity measurement of polyaniline[J]. Journal of Applied Physics,2007,101(8):083507. doi: 10.1063/1.2714650
    [27] 刘祎, 张荔. 聚3, 4-乙烯二氧噻吩: 聚苯乙烯磺酸盐基柔性复合热电材料研究进展[J]. 复合材料学报, 2021, 38(2):287-297.

    LIU Y, ZHANG L. Recent progress on poly(3, 4-ethyl-enedioxythiophene): polystyrenesulfonate-based flexible composite thermoelectric materials[J]. Acta Materiae Compositae Sinica,2021,38(2):287-297(in Chinese).
    [28] KIM D, KIM Y, CHOI K et al. Improved Thermoelectric Behavior of nanotube-filled polymer composites with poly(3, 4-ethylenedioxythiophene) poly(styrenesulfonate)[J]. ACS Nano,2010,4(1):513-523. doi: 10.1021/nn9013577
    [29] SCHOLDT M, DO H, LANG J et al. Organic semiconductors for thermoelectric applications[J]. Journal of Eelctronic Materials,2010,39(9):1589-1592. doi: 10.1007/s11664-010-1271-8
    [30] LIU C C, XU J K, LU B Y et al. Simultaneous increases in electrical conductivity and Seebeck coefficient of PEDOT: PSS films by adding ionic liquids into a polymer solution[J]. Journal of Electronic Materials,2012,41(4):639-645. doi: 10.1007/s11664-012-1942-8
    [31] LU W, LAI X F, LIU Q L et al. Enhanced thermoelectric performance of BiSe by Sn doping and ball milling[J]. Ceramics International,2021,47(18):26375-26382. doi: 10.1016/j.ceramint.2021.06.048
    [32] LI H B, ZONG Y D, DING Q J et al. Paper-based thermoelectric generator based on multi-walled carbon nanotube/carboxylated nanocellulose[J]. Journal of Power Sources,2021,500(15):229992.
    [33] CHEN R S, TANG J H, YAN Y J et al. Solvent-mediated n-type doping of SWCNTs to achieve superior thermoelectric power factor[J]. Advanced Materials Technologies,2020,5(9):2000288.
    [34] 陶颖, 祁宁, 王波等. 氧化铟/聚(3, 4-乙烯二氧噻吩)复合材料的微结构及其热电性能研究[J]. 物理学报, 2018, 67(19):197201. doi: 10.7498/aps.67.20180382

    TAO Y, QI N, WANG B et al. Microstructure and thermoelectric properties of In2O3 /poly(3, 4-ethylenedioxythiophene) composites[J]. Acta Physical Sinica,2018,67(19):197201(in Chinese). doi: 10.7498/aps.67.20180382
    [35] XU K L, CHEN G M, QIU D. Convenient construction of poly(3, 4-ethylenedioxythiophene)-graphene pie-like structure with enhanced thermoelectric performance[J]. Journal of Materials Chemistry A,2013,1(40):12395-12399. doi: 10.1039/c3ta12691a
    [36] FU P J, XU K L, SONG H Z et al. Preparation, stability and rheology of polyacrylamide/pristine layered double hydroxide nanocomposites[J]. Journal of Materials Chemistry,2010,20(19):3869-3876. doi: 10.1039/b927391c
    [37] HARUNA M A, PERVAIZ S, HU Z L et al. Improved rheology and high-temperature stability of hydrolyzed polyacrylamide using graphene oxide nanosheet[J]. Journal of Applied Polymer Science,2019,136(22):47582. doi: 10.1002/app.47582
    [38] XU K L, CHEN G M, QIU D. In situ chemical oxidative polymerization preparation of poly(3, 4-ethylenedioxythiophene)/graphene nanocomposites with enhanced thermoelectric performance[J]. Chemistry, an Asian Journal,2015,10(5):1225-1231. doi: 10.1002/asia.201500066
    [39] KSHIRSAGAR A S, HIRAGOND C, DEY A et al. Band engineered I/III/V–VI binary metal Selenide/MWCNT/PANI nanocomposites for potential poom temperature thermoelectric applications[J]. ACS Applied Energy Materials,2019,2(4):2680-2691. doi: 10.1021/acsaem.9b00013
    [40] ZHANG Z, CHEN G M, WANG H F et al. Template-directed in situ polymerization preparation of nanocomposites of PEDOT: PSS-coated multi-walled carbon nanotubes with enhanced thermoelectric property[J]. Chemistry, an Asian journal,2015,10(1):149-153. doi: 10.1002/asia.201403100
    [41] RDEST M, JANAS D. Effective doping of single-walled carbon nanotubes with polyethyleneimine[J]. Materials,2020,14(1):65. doi: 10.3390/ma14010065
    [42] ZHANG Y C, ZHANG Q C, CHEN G M. Carbon and carbon composites for thermoelectric applications[J]. Carbon Energy,2020,2(3):408-436. doi: 10.1002/cey2.68
    [43] GAO C Y, CHEN G M. Conducting polymer/carbon particle thermoelectric composites: Emerging green energy materials[J], Composites Science and Technology, 2016, 124 52-70.
    [44] TZOUNIS L, GARTNER T, LIEBSCHER M et al. Influence of a cyclic butylene terephthalate oligomer on the processability and thermoelectric properties of polycarbonate/MWCNT nanocomposites[J]. Polymer,2014,55(21):5381-5388. doi: 10.1016/j.polymer.2014.08.048
    [45] BADR H, YOUSSEF M A, ELSALAM H S A et al. Thermoelectric behaviour of polyvinyl acetate/CNT Composites, in: T[J]. M. M. Tms, S. Materials (Eds. ) TMS 2017 146th Annual Meeting & Exhibition Supplemental Proceedings, Springer International Publishing, Cham,2017:287-294.
    [46] IGNATIOUS V, RAVEENDRAN N, PRABHAKARAN A et al. MWCNT/Thienothiophene based all-organic thermoelectric composites: Enhanced performance by realigning of the fermi level through doping[J], Chemical Engineering Journal, 2021, 409 128294.
    [47] 王少阶, 陈志权, 王波, 吴奕初, 方鹏飞, 张永学, 《应用正电子谱学》[B], 湖北科学技术出版社, 2008.

    WANG S J, CHEN Z Q, WANG B et al. Applied positron spectroscopy[B], Hubei Science and Technology Press, 2008. (in Chinese)
    [48] CHOI J W, HAN M G, KIM S Y et al. Poly(3, 4-ethylenedioxythiophene) nanoparticles prepared in aqueous DBSA solutions[J]. Synthetic Metals,2004,141(3):293-299. doi: 10.1016/S0379-6779(03)00419-3
    [49] GARREAU S, LOUARN G, BUISSON J P et al. In situ spectroelectrochemical raman studies of poly(3, 4-ethylenedioxythiophene) (PEDT)[J]. Macromolecules,1999,32(20):6807-6812. doi: 10.1021/ma9905674
    [50] LIU Y L, CHEN W H. Modification of multiwall carbon nanotubes with initiators and macroinitiators of atom transfer radical polymerization[J]. Macromolecules,2007,40(25):8881-8886. doi: 10.1021/ma071700s
    [51] BASKARAN D, MAYS J W, BRATCHER M S. Noncovalent and nonspecific molecular interactions of polymers with multiwalled carbon nanotubes[J]. Chemistry of Materials,2005,17(13):3389-3397. doi: 10.1021/cm047866e
    [52] MENG C Z, LIU C H, FAN S S. A promising approach to enhanced thermoelectric properties using carbon nanotube networks[J]. Advanced materials,2010,22(4):535-539. doi: 10.1002/adma.200902221
    [53] ZHENG Y, ZENG H N, ZHU Q et al. Recent advances in conducting poly(3, 4-ethylenedioxythiophene): polystyrene sulfonate hybrids for thermoelectric applications[J]. Journal of Materials Chemistry C,2018,6(33):8858-8873. doi: 10.1039/C8TC01900B
    [54] LI C Y, ZHAO B, ZHOU B et al. Effects of electrical conductivity on the formation and annihilation of positronium in porous materials[J]. Physical Chemistry Chemical Physics,2017,19(11):7659-7667. doi: 10.1039/C6CP07483A
    [55] YAO Q, CHEN L D, ZHANG W Q et al. Enhanced thermoelectric performance of single-walled carbon nanotubes/polyaniline hybrid nanocomposites[J]. ACS Nano,2010,4(4):2445-2451. doi: 10.1021/nn1002562
    [56] YU C, KIM Y S, KIM D et al. Thermoelectric behavior of segregated-network polymer nanocomposites[J]. Nano letters,2008,8(12):4428-4432. doi: 10.1021/nl802345s
    [57] YAO Q, WANG Q, WANG L M et al. Abnormally enhanced thermoelectric transport properties of SWNT/PANI hybrid films by the strengthened PANI molecular ordering[J]. Energy & Environmental Science,2014,7(11):3801-3807.
  • 加载中
计量
  • 文章访问数:  82
  • HTML全文浏览量:  56
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-20
  • 录用日期:  2022-02-26
  • 修回日期:  2022-02-16
  • 网络出版日期:  2022-03-19

目录

    /

    返回文章
    返回