Advances in the preparation of wet-spun PEDOT:PSS-based fibers and its application in flexible electronic devices
-
摘要: 近年来,导电聚合物材料在柔性可穿戴电子领域的应用越来越瞩目。与薄膜材料相比,纤维材料在柔性、可织造等方面有着先天的优势,湿法纺丝技术是连续制备导电纤维的主要手段,PEDOT:PSS基纤维具有柔性、高导电性、比表面积大、可纺性等优势。然而,PEDOT主链的刚性使纤维的拉伸性和导电性无法同时满足,使其在柔性可穿戴电子领域的应用受到限制。因此,经湿法纺丝制备高性能导电纤维的研究成为了时下的热点和难点。通过对湿法纺丝过程中的关键步骤进行优化,可以有效提高纤维的综合性能,从而为导电纤维在未来柔性电子领域的应用提供新的可能性。本文总结了当前湿法纺丝PEDOT:PSS基纤维的制备策略,包括纺丝液设计、凝固浴调控及后处理优化三个关键步骤,分析了PEDOT:PSS基纤维在柔性电子器件领域中的应用和存在的问题,展望了PEDOT:PSS基纤维在新一代纤维基柔性电子器件中的性能表现和发展方向。Abstract: In recent years, the application of conductive polymer materials in the field of flexible wearable electronics has been increasingly prominent. Compared with film materials, fibers have inherent advantages in flexibility, weavability, etc. Wet spinning technology is the main means of continuous preparation of conductive fibers, and the PEDOT:PSS-based fibers have the advantages of flexibility, high electrical conductivity, large specific surface area, spinnability, and so on. However, the rigidity of the PEDOT main chain prevents the simultaneous satisfaction of fiber stretchability and conductivity, limiting its application in the field of flexible wearable electronics. Therefore, research on wet spinning to prepare high-performance conductive fibers has become a current focus and challenge. By optimizing the key steps in the wet spinning process, the comprehensive performance of fibers can be effectively enhanced, thereby providing new possibilities for the application of conductive fibers in the future field of flexible electronics. In this review, we summarize the current preparation strategy of wet spinning PEDOT:PSS-based fibers, including the three key steps of spinning solution design, coagulation bath regulation and post-treatment optimization, analyze the applications and challenges of PEDOT:PSS-based fibers in the field of flexible electronic devices, and provide prospects for the performance and development direction of PEDOT:PSS-based fibers in next-generation fiber-based flexible electronic devices.
-
图 4 H2SO4处理PEDOT:PSS纤维增强的机制[45]
(a) 湿法纺丝PEDOT:PSS纤维硫酸后处理工艺 (b)纤维经H2SO4处理前后的应力应变曲线 (c) H2SO4处理前后PEDOT:PSS纤维的S2 p XPS谱图 (d) 在900-1700 cm−1和(e) 1380-1480 cm−1波数范围内,H2SO4处理前后PEDOT:PSS纤维的拉曼光谱 (f) 未处理和 (g) H2SO4处理的PEDOT:PSS纤维的广角X射线散射(WAXS)图谱 (h) PEDOT:PSS纤维中PEDOT链堆积排列示意图
Figure 4. Mechanism of performance enhancement of PEDOT:PSS fiber after H2SO4 post-treatment[45]
(a) the post-treatment of wet-spun PEDOT:PSS fibers with H2SO4 (b) stress-strain curves of fibers before and after treatment with H2SO4 (c) S2 p XPS spectra of the PEDOT:PSS fiber before and after H2SO4 treatment. Raman spectra of the PEDOT:PSS fiber before and after H2SO4 treatment in the wavenumber ranges of (d) 900-1700 cm−1 and (e) 1380-1480 cm−1. WAXS patterns of (f) untreated and (g) H2SO4-treated PEDOT:PSS fibers. (h) schematic diagram of the chain packing alignment of PEDOT in the PEDOT:PSS fiber.
图 5 拉伸对湿纺PEDOT:PSS纤维性能的影响[48]
(a)PEDOT:PSS膜 (b) 对PEDOT:PSS纤维进行拉伸 (c) 进一步拉伸的WAXS分析,(d) 归一化强度(相对于PSS宽峰)与2 θ的关系,(e) PEDOT:PSS晶体结构的示意图,(f)(100)反射和(g)(020)反射的方位角的函数,(h)电导率(i)杨氏模量与聚合物链取向的关系,(j) 电导率与杨氏模量的关系
Figure 5. Effect of drawing on the properties of wet-spun PEDOT:PSS fibers [48]
2 D WAXS pattern of (a) PEDOT:PSS film, (b) drawing on PEDOT:PSS fibers (c) further drawing (d) normalized intensity (concerning the PSS broad hump) versus 2θ (e) scheme of the PEDOT:PSS crystal structure Intensity as a function of azimuthal angle for (f) (100) reflections and (g) (020) reflections correlation between (h) electrical conductivity and (i) Young’s modulus versus polymer chain orientation (j) correlation between electrical conductivity versus Young’s modulus.
图 6 (a) 红外灯照射PEDOT:PSS基纤维图示,(b) 纤维在不同距离下的电阻变化,(c)纤维电阻变化的响应时间( D = 20 cm , T = 50℃),(d) 纤维在相同距离( D = 20 cm , T = 50℃)红外灯的100次周期性开/关下的传感性能,(e) 纤维用于仿生手臂感知压力和温度的概念应用[49]。
Figure 6. (a) Demonstration of PEDOT:PSS-based fibers irradiated by infrared lamp (b) resistance changes of fibers at different distances (c) response time of fibers resistance change (D = 20 cm, T = 50℃) (d) the sensing performance of composite fibers during 100 lamp on-off cycles at the same distance (D = 20 cm, T = 50℃) (e) fibers are used for concept application of bionic arms sensing pressure and temperature[49]
表 1 后处理策略提升湿法纺丝纤维性能的方法和机制
Table 1. Approaches and mechanisms of post-treatment to enhance the performance of wet-spun fibers
Post-treatment strategy Common methods Principles of Performance Enhancement Solution treatment EG(Ethylene glycol)、H2SO4(Sulfuric acid)、EtOH(ethanol)/H2O、DMF(N,N-Dimethylformamide)、DMSO(Dimethyl sulfoxide) Removal of residual polymers, organic solvents, and non-conductive components of PSS(Polystyrene sulfonate)to improve fiber crystallinity and surface flatness Tensile treatment Physical tensile Align the main chains of PEDOT(Poly(3,4-ethylenedioxythiophene)) and PSS in the direction of the fiber axis, reduce defects, and improve the conductivity and thermal stability of the fibers Heat treatment Heating or insulation treatment Heating promotes the orderly arrangement of fiber molecular chains, improves the intermolecular packing density, and increases the crystallinity of fibers, changing the structure and morphology of fibers Light treatment UV or infrared light exposure Improvement of fiber conformation and fiber surface morphology to promote charge transport and carrier generation, further improving fiber conductivity and stability -
[1] NIU Z, QI S, ShUAIB S S A, et al. Flexible, Stimuli-Responsive and Self-Cleaning Phase Change Fiber for Thermal Energy Storage and Smart Textiles[J]. Composites Part B: Engineering, 2022, 228: 109431. doi: 10.1016/j.compositesb.2021.109431 [2] ALTHAGAFY K, ALOTIBI E, Al-DOSSARI M, et al. Design and construction of a flexible conductor based on a complex conductive polymer: PEDOT: PSS/polyaniline and its application as a pressure sensor[J]. Results in Physics, 2023, 51: 106689. doi: 10.1016/j.rinp.2023.106689 [3] ZHANG Z, CHEN G, XUE Y, et al. Fatigue-Resistant Conducting Polymer Hydrogels as Strain Sensor for Underwater Robotics[J]. Advanced Functional Materials, 2023, 33(42): 2305705. doi: 10.1002/adfm.202305705 [4] REN Y, QING L, LI L, et al. Facile synthesis of highly conductive polymer fiber for application in flexible fringing field capacitive sensor[J]. Sensors and Actuators A: Physical, 2022, 342: 113616. doi: 10.1016/j.sna.2022.113616 [5] FAN X, XU B, LIU S, et al. Transfer-Printed PEDOT: PSS Electrodes Using Mild Acids for High Conductivity and Improved Stability with Application to Flexible Organic Solar Cells[J]. ACS Applied Materials & Interfaces, 2016, 8(22): 14029-14036. [6] SHEWALE P S, YUN K-S. Ternary nanocomposites of PEDOT: PSS, RGO, and urchin-like hollow microspheres of NiCo2O4 for flexible and weavable supercapacitors[J]. Materials Science and Engineering: B, 2023, 292: 116404. doi: 10.1016/j.mseb.2023.116404 [7] RUAN L, ZHAO Y, CHEN Z, et al. A Self-Powered Flexible Thermoelectric Sensor and Its Application on the Basis of the Hollow PEDOT: PSS Fiber[J]. Polymers, 2020, 12(3): 553. doi: 10.3390/polym12030553 [8] LIM T, KIM Y, JEONG S-M, et al. Human sweat monitoring using polymer-based fiber[J]. Scientific Reports, 2019, 9(1): 17294. doi: 10.1038/s41598-019-53677-2 [9] 王荣顺, 孟令鹏. 聚乙炔掺杂导电的双向机制[J]. 化学学报, 1991(1): 26–31.WANG M S, MENG L P, Bidirectional mechanism ofpolyacetylene doping for electrical conductivity[J]. Acta Chimica Sinica, 1991(1): 26–31(in Chinese). [10] 熊泽宇, 张强, 魏士文, 等. 导电聚合物在气体传感器中的研究进展[J]. 包装工程, 2023, 44(5): 41-50.XIONG Z Y, ZHANG Q, WEI S W, etal. Research Progress of conductive polymers in gas senser[J]. Packaging Engineering, 2023, 44(5): 41-50(in Chinese). [11] SU Y, XUE H, Fu Y, et al. Monolithic Fabrication of Metal-Free On-Paper Self-Charging Power Systems[J]. Advanced Functional Materials, 2024: 2313506. [12] YAN B, LIU S, YUAN Y, et al. Polymer-Regulating MXene@Dopamine Electroactive Gel-Inks for Textile-Based Multi-Protective Wearables[J]. Advanced Functional Materials, 2024: 2401097. [13] LI J, CAO J, LU B, et al. 3D-printed PEDOT: PSS for soft robotics[J]. Nature Reviews Materials, 2023, 8(9): 604-622. doi: 10.1038/s41578-023-00587-5 [14] WANG P, SUN G, YU W, et al. Wearable, ultrathin and breathable tactile sensors with an integrated all-nanofiber network structure for highly sensitive and reliable motion monitoring[J]. Nano Energy, 2022, 104: 107883. doi: 10.1016/j.nanoen.2022.107883 [15] LI Z, RUIZ V, MISHUKOVA V, et al. Inkjet Printed Disposable High-Rate On-Paper Microsupercapacitors[J]. Advanced Functional Materials, 2022, 32(1): 2108773. doi: 10.1002/adfm.202108773 [16] LEE W, LEE S, KIM H, et al. Organic thermoelectric devices with PEDOT: PSS/ZnO hybrid composites[J]. Chemical Engineering Journal, 2021, 415: 128935. doi: 10.1016/j.cej.2021.128935 [17] ZHANG J, YE C, WEI G, et al. Polaron interfacial entropy as a route to high thermoelectric performance in DAE-doped PEDOT: PSS films[J]. National Science Review, 2024, 11(3): nwae009. doi: 10.1093/nsr/nwae009 [18] YANG Y, XU B, HOU J. Mixed-Addenda Dawson-Type Polyoxometalates as High-Performance Anode Interlayer Materials for Efficient Organic Optoelectronic Devices[J]. Advanced Energy Materials, 2023, 13(14): 2204228. doi: 10.1002/aenm.202204228 [19] WANG J, YU Z, ASTRIDGE D D, et al. Carbazole-Based Hole Transport Polymer for Methylammonium-Free Tin–Lead Perovskite Solar Cells with Enhanced Efficiency and Stability[J]. ACS Energy Letters, 2022, 7(10): 3353-3361. doi: 10.1021/acsenergylett.2c01578 [20] QU S, MING C, QIU P, et al. High-performance n-type Ta 4 SiTe4 /polyvinylidene fluoride (PVDF)/graphdiyne organic–inorganic flexible thermoelectric composites[J]. Energy & Environmental Science, 2021, 14(12): 6586-6594. [21] 田国强. 高弹性和电阻稳定的PEDOT: PSSS导电纤维的制备与性能研究[D]. 广州: 华南理工大学, 2018.TIAN Guoqiang. Preparation and properties of the highly elastic and resistance stable PEDOT: PSS fibers[D]. Guangzhou: South China University of Technology, 2018(in Chinese). [22] ZHANG S, MENG C, WU Y, et al. Efficient production of copolymerized PA6-based polymer fibers: Oligomer control and direct melt spinning[J]. Polymer, 2024, 296: 126762. doi: 10.1016/j.polymer.2024.126762 [23] Al-QAHTANI S D, Al-SENANI G M. Preparation of photoresponsive lanthanide aluminate-immobilized nanofibers from recycled bioplastic via solution blowing spinning for optical authentication labeling[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2024, 451: 115525. doi: 10.1016/j.jphotochem.2024.115525 [24] XU C, YUE C, YAO Y, et al. 3D cotton-like phase change fibers via electrospinning for thermal management of textile[J]. Journal of Energy Storage, 2024, 84: 110991. doi: 10.1016/j.est.2024.110991 [25] YANG K, WU Y, WANG W, et al. Stretchable, flexible fabric heater based on carbon nanotubes and water polyurethane nanocomposites by wet spinning process[J]. Nanotechnology, 2024, 35(12): 125706. doi: 10.1088/1361-6528/ad1646 [26] XIA Z, DAI H, CHANG J, et al. Rheology Engineering for Dry-Spinning Robust N-Doped MXene Sediment Fibers toward Efficient Charge Storage[J]. Small, 2023, 19(48): 2304687. doi: 10.1002/smll.202304687 [27] GARRUDO F F F, FILIPPONE G, RESINA L, et al. Production of Blended Poly(acrylonitrile): Poly(ethylenedioxythiophene): Poly(styrene sulfonate) Electrospun Fibers for Neural Applications[J]. Polymers, 2023, 15(13): 2760. doi: 10.3390/polym15132760 [28] ZHOU Q, TENG W, JIN Y, et al. Highly-conductive PEDOT: PSS hydrogel framework based hybrid fiber with high volumetric capacitance and excellent rate capability[J]. Electrochimica Acta, 2020, 334: 135530. doi: 10.1016/j.electacta.2019.135530 [29] LIU L, CHEN J, LIANG L, et al. A PEDOT: PSS thermoelectric fiber generator[J]. Nano Energy, 2022, 102: 107678. doi: 10.1016/j.nanoen.2022.107678 [30] 李昕, 许英涛, 郑一平, 等. 原位聚合制备PEDOT-PSS/PVA电磁波吸收功能复合导电织物[J]. 高分子学报, 2017, (4): 661-668. doi: 10.11777/j.issn1000-3304.2017.16158LI X, XU Y T, ZHANG Y P, et al. Preparation of PEDOT-PSS/PVA electromagnetic wave-absorbing composite conductive fabrics by insitu polymerization[J]. Acta polymerica sinica, 2017, (4): 661-668(in Chinese). doi: 10.11777/j.issn1000-3304.2017.16158 [31] GAO Q, WANG M, KANG X, et al. Continuous wet-spinning of flexible and water-stable conductive PEDOT: PSS/PVA composite fibers for wearable sensors[J]. Composites Communications, 2020, 17: 134-140. doi: 10.1016/j.coco.2019.12.001 [32] WANG M, GAO Q, GAO J, et al. Core–shell PEDOT: PSS/SA composite fibers fabricated via a single-nozzle technique enable wearable sensor applications[J]. Journal of Materials Chemistry C, The Royal Society of Chemistry, 2020, 8(13): 4564-4571. [33] WANG S, GUO X, LIAO S, et al. Aramid nanofiber-reinforced MXene/PEDOT: PSS hybrid fibers for high-performance fiber-shaped supercapacitors[J]. Electrochimica Acta, 2023, 466: 143062. doi: 10.1016/j.electacta.2023.143062 [34] WEN N, GUAN X, ZUO X, et al. Investigations of Morphology and Carrier Transport Characteristics in High-Performance PEDOT: PSS/Tellurium Binary Composite Fibers Produced via Continuous Wet-Spinning[J]. Advanced Functional Materials, 2024: 2315677. [35] XU C, YANG S, LI P, et al. Wet-spun PEDOT: PSS/CNT composite fibers for wearable thermoelectric energy harvesting[J]. Composites Communications, 2022, 32: 101179. doi: 10.1016/j.coco.2022.101179 [36] 康鑫湲, 高强, 王明序, 等. 乙二醇添加量对PEDOT∶PSS/PVA复合纤维形貌和性能的影响[J]. 材料科学与工程学报, 2020, 38(5): 806-810.KANG X Y, GAO Q, WANG M X, et al. Effect of ethyleneglycol on morphology and properties of PEDOT: PSS/PVA composite fibers[J]. Journal of Materials Science & Engineering, 2020, 38(5): 806-810(in Chinese). [37] WU T, SHI X-L, LIU W-D, et al. High Thermoelectric Performance and Flexibility in Rationally Treated PEDOT: PSS Fiber Bundles[J]. Advanced Fiber Materials, 2024. [38] CAI S, HUANG T, CHEN H, et al. Wet-spinning of ternary synergistic coaxial fibers for high performance yarn supercapacitors[J]. Journal of Materials Chemistry A, 2017, 5(43): 22489-22494. doi: 10.1039/C7TA07937K [39] DOGANAY D, DEMIRCIOGLU O, CUGUNLULAR M, et al. Wet spun core-shell fibers for wearable triboelectric nanogenerators[J]. Nano Energy, 2023, 116: 108823. doi: 10.1016/j.nanoen.2023.108823 [40] WANG P, WANG M, ZHU J, et al. Surface engineering via self-assembly on PEDOT: PSS fibers: Biomimetic fluff-like morphology and sensing application[J]. Chemical Engineering Journal, 2021, 425: 131551. doi: 10.1016/j.cej.2021.131551 [41] GAO Q, WANG P, WANG M, et al. Metal salt modified PEDOT: PSS fibers with enhanced elongation and electroconductivity for wearable e-textiles[J]. Composites Communications, 2021, 25: 100700. doi: 10.1016/j.coco.2021.100700 [42] ZHANG J, SEYEDIN S, QIN S, et al. Fast and scalable wet-spinning of highly conductive PEDOT: PSS fibers enables versatile applications[J]. Journal of Materials Chemistry A, 2019, 7(11): 6401-6410. doi: 10.1039/C9TA00022D [43] GAO Q, ZHANG Y, WANG P, et al. Robust and knittable wet-spun PEDOT: PSS fibers via water[J]. Composites Communications, 2023, 40: 101623. doi: 10.1016/j.coco.2023.101623 [44] WANG P, ZENG H, ZHU J, et al. Micro-supercapacitors based on ultra-fine PEDOT: PSS fibers prepared via wet-spinning[J]. Chemical Engineering Journal, 2024, 484: 149676. doi: 10.1016/j.cej.2024.149676 [45] WEN N, FAN Z, YANG S, et al. Highly conductive, ultra-flexible and continuously processable PEDOT: PSS fibers with high thermoelectric properties for wearable energy harvesting[J]. Nano Energy, 2020, 78: 105361. doi: 10.1016/j.nanoen.2020.105361 [46] XIAO Q, ZHANG X, TAN P, et al. Thermoelectric Energy Conversion Using Poly(3, 4-ethylenedioxythiophene): Poly(styrenesulfonate) Fibers Based on Low-Temperature In Situ Polymerization and the Freeze–Thaw Method[J]. ACS Applied Polymer Materials, 2024, 6(3): 1772-1780. doi: 10.1021/acsapm.3c02611 [47] PAN Y, SONG Y, JIANG Q, et al. Solvent treatment of wet-spinning PEDOT: PSS fiber towards wearable thermoelectric energy harvesting[J]. Synthetic Metals, 2022, 283: 116969. doi: 10.1016/j.synthmet.2021.116969 [48] SARABIA-RIQUELME R, SHAHI M, BRILL J W, et al. Effect of Drawing on the Electrical, Thermoelectrical, and Mechanical Properties of Wet-Spun PEDOT: PSS Fibers[J]. ACS Applied Polymer Materials, 2019, 1(8): 2157-2167. doi: 10.1021/acsapm.9b00425 [49] WANG Y, GAO C, ZHAO C, et al. Engineering PEDOT: PSS/PEG Fibers with a Textured Surface toward Comprehensive Personal Thermal Management[J]. ACS Applied Materials & Interfaces, 2023, 15(13): 17175-17187. [50] WANG Y, ZHU J, SHEN M, et al. Three-layer core–shell Ag/AgCl/PEDOT: PSS composite fibers via a one-step single-nozzle technique enabled skin-inspired tactile sensors[J]. Chemical Engineering Journal, 2022, 442: 136270. doi: 10.1016/j.cej.2022.136270 [51] ZHANG Y, ZHOU J, ZHANG Y, et al. Elastic Fibers/Fabrics for Wearables and Bioelectronics[J]. Advanced Science, 2022, 9(35): 2203808. doi: 10.1002/advs.202203808 [52] REID, SMITH, GARCIA-TORRES, et al. Solvent Treatment of Wet-Spun PEDOT: PSS Fibers for Fiber-Based Wearable pH Sensing[J]. Sensors, 2019, 19(19): 4213. doi: 10.3390/s19194213 [53] NURAMDHANI I, JOSE M, SAMYN P, et al. Charge-Discharge Characteristics of Textile Energy Storage Devices Having Different PEDOT: PSS Ratios and Conductive Yarns Configuration[J]. Polymers, 2019, 11(2): 345. doi: 10.3390/polym11020345 [54] CHEN J, ZHU J, WEI Z, et al. Highly stretchable and elastic PEDOT: PSS helix fibers enabled wearable sensors[J]. Journal of Materials Chemistry C, The Royal Society of Chemistry, 2023, 11(39): 13358-13369. [55] CHEN H, XU H, LUO M, et al. Highly Conductive, Ultrastrong, and Flexible Wet-Spun PEDOT: PSS/Ionic Liquid Fibers for Wearable Electronics[J]. ACS Applied Materials & Interfaces, 2023, 15(16): 20346-20357. [56] HUANG H, ZHANG Y, ZHAO Y, et al. Sewable high-performance poly(3, 4-ethylenedioxythiophene): poly(styrenesulfonate)/layered double hydroxide core-shell fiber electrodes for flexible supercapacitors[J]. Journal of Power Sources, 2023, 570: 233055. doi: 10.1016/j.jpowsour.2023.233055
计量
- 文章访问数: 48
- HTML全文浏览量: 24
- 被引次数: 0