留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

自润滑织物复合材料力学预测及实验验证

张容 方琳 梁磊 任慕苏 孙晋良 俞鸣明

张容, 方琳, 梁磊, 等. 自润滑织物复合材料力学预测及实验验证[J]. 复合材料学报, 2022, 39(10): 4988-4996. doi: 10.13801/j.cnki.fhclxb.20211025.004
引用本文: 张容, 方琳, 梁磊, 等. 自润滑织物复合材料力学预测及实验验证[J]. 复合材料学报, 2022, 39(10): 4988-4996. doi: 10.13801/j.cnki.fhclxb.20211025.004
ZHANG Rong, FANG Lin, LIANG Lei, et al. Mechanical prediction and experimental verification of self-lubricating fabric composites[J]. Acta Materiae Compositae Sinica, 2022, 39(10): 4988-4996. doi: 10.13801/j.cnki.fhclxb.20211025.004
Citation: ZHANG Rong, FANG Lin, LIANG Lei, et al. Mechanical prediction and experimental verification of self-lubricating fabric composites[J]. Acta Materiae Compositae Sinica, 2022, 39(10): 4988-4996. doi: 10.13801/j.cnki.fhclxb.20211025.004

自润滑织物复合材料力学预测及实验验证

doi: 10.13801/j.cnki.fhclxb.20211025.004
基金项目: 上海市学术/技术研究负责人计划(20XD1434300);广东省重点研发计划(2019B010929001)
详细信息
    通讯作者:

    俞鸣明,博士,副研究员,博士生导师,研究方向为碳碳复合材料 E-mail:mmyu@shu.edu.cn

  • 中图分类号: TB332

Mechanical prediction and experimental verification of self-lubricating fabric composites

  • 摘要: 利用有限元模型对自润滑织物复合材料的拉伸强度进行预测,得到了复合材料的磨损率预测模型。采用TexGen建立了自润滑织物复合材料的单胞有限元模型,利用ABAQUS对复合材料的拉伸进行了有限元模拟,最后通过实验验证了复合材料的拉伸强度。结果表明,复合材料经向模拟值与实验值差异率为6.71%,纬向差异率为5.51%,从而说明复合材料有限元模型具有较高的可靠性。从拉伸应力云图可得复合材料的拉伸强度由拉伸方向的纤维的弹性模量决定。在此基础上对自润滑织物复合材料的磨损率及摩擦磨损机制分析,建立复合材料的拉伸强度与磨损率之间的映射关系,预测模型得到的磨损率预测值与实验结果的平均差异率为8.43%,表明体积磨损率预测模型的可靠性。

     

  • 图  1  自润滑织物单胞图

    Figure  1.  Unit cell diagram of self-lubricating fabric

    PTFE—Polytetrafluoroethylene

    图  2  样品盘(a)及摩擦磨损试验机原理示意图(b)

    Figure  2.  Schematic diagram of sample plate (a) and principle of friction and wear tester (b)

    图  3  自润滑织物复合材料有限元模型

    Figure  3.  Finite element model of self-lubricating fabric composites

    图  4  自润滑织物复合材料有限元网格

    Figure  4.  Finite element mesh of self-lubricating fabric composites

    图  5  有限元模型约束和加载

    Figure  5.  Constraints and loading of the finite element model

    图  6  经向拉伸有限元仿真结果与实验结果对比

    Figure  6.  Comparison of finite element simulation results and experimental results of warp tension

    图  7  纬向拉伸有限元仿真结果与实验结果对比

    Figure  7.  Comparison of finite element simulation results and experimental results of weft tension

    图  8  自润滑织物复合材料的经向拉伸应力云图

    Figure  8.  Warp tensile stress cloud diagram of self-lubricating fabric composites

    图  9  自润滑织物复合材料的纬向拉伸应力云图

    Figure  9.  Weft tensile stress cloud diagram of self-lubricating fabric composites

    图  10  自润滑织物复合材料磨损率

    Figure  10.  Wear rate of self-lubricating fabric composite

    图  11  自润滑织物复合材料的摩擦磨损图

    Figure  11.  Friction and wear diagram of self-lubricating fabric composites

    图  12  复合材料磨损表面及对偶面的SEM图像:(a) N1;(b) N2;(c) N1对偶面;(d) N2对偶面

    Figure  12.  SEM images of composite wear surface and its dual surface: (a) N1; (b) N2; (c) N1 dual surface; (d) N2 dual surface

    图  13  经纬向纤维弹性模量

    Figure  13.  Elastic modulus of fiber in warp and weft direction

    图  14  自润滑织物复合材料磨损率的预测值与实际值的比较

    Figure  14.  Comparison of predicted wear rate and actual wear rate of self-lubricating fabric composites

    表  1  织物复合材料的性能

    Table  1.   Properities of fabric composites

    No.FabricWarp density/
    (roots/10 cm)
    Weft density/
    (roots/10 cm)
    WarpWeft
    N1PMIAPMIA+PTFE450±10280±10
    N2PMIAPI+PTFE
    N3PMIAPEEK+PTFE
    N4PMIAF-3+PTFE
    N5PMIAPPS+PTFE
    P1PIPMIA+PTFE
    P2PIPI+PTFE
    P3PIPEEK+PTFE
    P4PIF-3+PTFE
    Notes: PMIA—Polyisophthalamid; PI—Polyimid; PEEK—Polyether-ether-ketone; F-3—Cycloaromatic polyamide; PPS—Polyphenylene sulfide.
    下载: 导出CSV

    表  2  自润织物复合材料细观参数

    Table  2.   Microscopic parameters of self-lubricating fabric composites

    No.Thickness/
    mm
    WeftWarp
    WidthHeightSpacingWidthHeightSpacing
    N10.2530.1500.1310.2250.1500.1310.302
    N20.2640.1460.1320.2300.1460.1320.298
    N30.2540.1520.1290.2290.1520.1290.231
    N40.2620.1480.1250.2150.1480.1250.234
    N50.2520.1530.1270.2270.1530.1270.265
    P10.2570.1490.1330.2410.1490.1330.302
    P20.2630.1540.1310.2440.1540.1310.298
    P30.2590.1560.1270.2540.1560.1270.304
    P40.2580.1510.1280.2450.1510.1280.302
    下载: 导出CSV
  • [1] REN G N, ZHANG Z Z, SONG Y M, et al. Effect of MWCNTs-GO hybrids on tribological performance of hybrid PTFE/Nomex fabric/phenolic composite[J]. Composites Science and Technology,2017,146:155-160. doi: 10.1016/j.compscitech.2017.04.022
    [2] YANG M M, YUAN J Y, MEN X H, et al. Effect of ZrB2 particles incorporation on high-temperature tribological properties of hybrid PTFE/Nomex fabric/phenolic composite[J]. Tribology International,2016,99:289-295. doi: 10.1016/j.triboint.2016.03.033
    [3] WANG H, QI X W, ZHANG W L, et al. Tribological properties of PTFE/Kevlar fabric composites under heavy loading[J]. Tribology International,2020,151:106507. doi: 10.1016/j.triboint.2020.106507
    [4] WANG B B, FU Q G, LI H J, et al. In situ growth of graphene on carbon fabrics with enhanced mechanical and thermal properties for tribological applications of carbon fabric-phenolic composites[J]. Tribology Transactions,2019,62(5):850-858. doi: 10.1080/10402004.2019.1626519
    [5] QIU M, YANG Z, LU J, et al. Influence of step load on tribological properties of self-lubricating radial spherical plain bearings with PTFE fabric liner[J]. Tribology International,2017,113:344-353. doi: 10.1016/j.triboint.2017.02.047
    [6] 李俊超, 朱丽娜, 马国政, 等. 自润滑关节轴承质量检测及寿命评估研究现状[J]. 材料导报, 2018, 32(21):3796-3804. doi: 10.11896/j.issn.1005-023X.2018.21.017

    LI Junchao, ZHU Lina, MA Guozheng, et al. Research status on quality inspection and life evaluation of self-lubricating spherical plain bearings[J]. Materials Review,2018,32(21):3796-3804(in Chinese). doi: 10.11896/j.issn.1005-023X.2018.21.017
    [7] 苏萌, 任放俞, 鸣明, 等. 温度和纱线捻向对自润滑织物复合材料摩擦磨损性能的影响[J]. 高分子材料科学与工程, 2019, 35(9):82-88, 94. doi: 10.16865/j.cnki.1000-7555.2019.0240

    SU Meng, REN Fangyu, YU Ming, et al. Influence of temperature and yarn twisting direction on the tribological properties of self-lubricating fabric composites[J]. Polymer Materials Science & Engineering,2019,35(9):82-88, 94(in Chinese). doi: 10.16865/j.cnki.1000-7555.2019.0240
    [8] ZHAO X, OUYANG J, TAN Q, et al. Interfacial characteristics between mineral fillers and phenolic resin in friction materials[J]. Materials Express: An International Journal on Multidisciplinary Materials Research,2020,10(1):70-80. doi: 10.1166/mex.2020.1596
    [9] SAHIN Y, DE BAETS P. Friction and wear behavior of carbon fabric-reinforced epoxy composites[J]. JOM,2017,69(12):2443-2447. doi: 10.1007/s11837-017-2273-2
    [10] STOLYAROV O, QUADFLIEG T, GRIES T. Characterization of shear behavior of warp-knitted fabrics applied to composite reinforcement[J]. The Journal of the Textile Institute,2017,108(1):89-94. doi: 10.1080/00405000.2016.1153876
    [11] GU D, ZHANG L, CHEN S, et al. Reciprocating sliding wear of hybrid PTFE/Kevlar fabric composites along different orientations[J]. RSC Advances,2018,8(37):20877-20883. doi: 10.1039/c8ra03290d
    [12] LV M, ZHENG F, WANG Q, et al. Friction and wear behaviors of carbon and aramid fibers reinforced polyimide composites in simulated space environment[J]. Tribology International,2015,92:246-254. doi: 10.1016/j.triboint.2015.06.004
    [13] ZHAO Z K, DU S S, LI F, et al. Mechanical and tribological properties of short glass fiber and short carbon fiber reinforced polyethersulfone composites: A comparative study[J]. Composites Communications,2018,8:1-6. doi: 10.1016/j.coco.2018.02.001
    [14] PATEL V K, CHAUHAN S, KATIYAR J K. Physico-mechanical and wear properties of novel sustainable sour-weed fiber reinforced polyester composites[J]. Materials Research Express,2018,5(4):045310. doi: 10.1088/2053-1591/aabdd4
    [15] SUN W, GU Y, YANG Z, et al. Enhanced tribological performance of hybrid polytetrafluoroethylene/Kevlar fabric composite filled with milled pitch-based carbon fibers[J]. Journal of Applied Polymer Science,2018,135(19):46269. doi: 10.1002/app.46269
    [16] XIONG X, SHEN S Z, ALAM N, et al. Mechanical and abrasive wear performance of woven flax fabric/polyoxymethylene composites[J]. Wear,2018,414-415:9-20. doi: 10.1016/j.wear.2018.07.010
    [17] YANG X, WANG C, LI Y, et al. Temperature effect on compression property of multiaxial warp-knitted composites[J]. High Performance Polymers,2019,32(4):469-479. doi: 10.1177/0954008319882757
    [18] LI H L, YIN Z W, JIANG D, et al. A study of the static/kinetic friction behavior of PTFE-based fabric composites[J]. Tribology Transactions,2017,61(1):122-132. doi: 10.1080/10402004.2017.1279700
    [19] GU D, FAN B, LI F, et al. Wear process analysis of the polytetrafluoroethylene/Kevlar twill fabric based on the components’ distribution characteristics[J]. Autex Research Journal,2017,17(4):295-302. doi: 10.1515/aut-2016-0015
    [20] LI H L, YIN Z, JIANG D, et al. Tribological behavior of hybrid PTFE/Kevlar fabric composites with different weave densities[J]. Industrial Lubrication & Tribology,2016,68(2):278-286. doi: 10.1108/ILT-08-2015-0118
    [21] WANG L, ZHAO B, WU J, et al. Experimental and numerical investigation on mechanical behaviors of woven fabric composites under off-axial loading[J]. International Journal of Mechanical Sciences,2018,141:157-167. doi: 10.1016/j.ijmecsci.2018.03.030
    [22] FERREIRA L M, GRACIANI E, PARIS F. Predicting failure load of a non-crimp fabric composite by means of a 3D finite element model including progressive damage[J]. Composite Structures,2019,225:111115. doi: 10.1016/j.compstruct.2019.111115
    [23] DONG K, PENG X, ZHANG J J, et al. Temperature-dependent thermal expansion behaviors of carbon fiber/epoxy plain woven composites: Experimental and numerical studies[J]. Composite Structures,2017,176:329-341. doi: 10.1016/j.compstruct.2017.05.036
    [24] ZHU L, LYU L, WANG Y, et al. Axial-compression performance and finite element analysis of a tubular three-dimensional-woven composite from a meso-structural approach sciencedirect[J]. Thin-Walled Structures,2020,157:107074. doi: 10.1016/j.tws.2020.107074
    [25] STRIEWE J, REUTER C, SAUERLAND K H, et al. Manufacturing and crashworthiness of fabric-reinforced thermoplastic composites[J]. Thin-Walled Structures,2018,123:501-508. doi: 10.1016/j.tws.2017.11.011
    [26] American Society for Testing and Materials. Standard test method for wear testing with a pin-on-disk apparatus: ASTM G99-17[S]. America: American Society for Testing and Materials, 2017.
    [27] 国防科学技术委员会. 低速摆动自润滑向心关节轴承规范: GJB 5502—2005[S]. 北京: 国防科工委军标出版发行部, 2005.

    Commission of Science, Technology and Industry for National Defense. Specification for low-speed oscillating and self-lubricating radial spherical plain bearings: GJB 5502—2005[S]. Beijing: Publication and Distribution Department of Military Tender, Commission of Science, Technology and Industry for National Defense, 2005.
  • 加载中
图(14) / 表(2)
计量
  • 文章访问数:  676
  • HTML全文浏览量:  323
  • PDF下载量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-16
  • 修回日期:  2021-10-03
  • 录用日期:  2021-10-15
  • 网络出版日期:  2021-10-27
  • 刊出日期:  2022-08-22

目录

    /

    返回文章
    返回