留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

仿羊角管状复合材料结构抗冲击性能

徐菁 李岩 付昆昆

徐菁, 李岩, 付昆昆. 仿羊角管状复合材料结构抗冲击性能[J]. 复合材料学报, 2022, 40(0): 1-12
引用本文: 徐菁, 李岩, 付昆昆. 仿羊角管状复合材料结构抗冲击性能[J]. 复合材料学报, 2022, 40(0): 1-12
Jing XU, Yan LI, Kunkun FU. Impact resistance of horn-inspired tubular composite structure[J]. Acta Materiae Compositae Sinica.
Citation: Jing XU, Yan LI, Kunkun FU. Impact resistance of horn-inspired tubular composite structure[J]. Acta Materiae Compositae Sinica.

仿羊角管状复合材料结构抗冲击性能

基金项目: 国家自然科学基金重点项目(12132011);国家自然科学基金委中英牛顿高级学者(12061130201);上海市国际科技合作基金项目(19520713000)
详细信息
    通讯作者:

    李岩,博士,教授,博士生导师,研究方向为复合材料设计和制造 E-mail: liyan@tongji.edu.cn

    付昆昆,博士,教授,博士生导师,研究方向为复合材料损伤评估和增材制造 E-mail:1984 fukunkun@tongji.edu.cn

  • 中图分类号: TB332

Impact resistance of horn-inspired tubular composite structure

Funds: National Natural Science Foundation of China Key Project(12132011);Royal Society-Newton Advanced Fellowship(12061130201);Shanghai International Science and Technology Cooperation Project(19520713000)
  • 摘要: 羊角因其独特的管状微观结构显示出优异的抗冲击性能。本研究从羊角微观结构汲取灵感,设计了仿羊角管状结构。基于3D打印熔融沉积技术,采用短切碳纤维增强尼龙复合材料制备了仿羊角管状结构(HTS)。冲击实验结果表明HTS试样的冲击载荷-位移曲线中存在较长的高载荷平台区,在此阶段吸收了大量的冲击能量,较非仿生样品吸能提升了143.9%,比吸能值提升了178.8%。提出了HTS冲击有限元模型,仿真预测结果和实验获得的冲击响应及裂纹扩展路径结果吻合较好,验证了该模型的有效性。采用该模型分析发现:在冲击过程中细管周围产生较大的应力集中,使裂纹发生偏转进而捕获裂纹,并在细管其他位置重新萌生新的裂纹并朝下一个细管扩展,这个过程不断重复,从而吸收了大量的冲击能量。最后,基于该有限元模型探索了几何参数和材料性能对HTS冲击吸能的影响规律。该研究探索了仿羊角管状复合材料结构冲击吸能特性和吸能机制,对新型抗冲击装备的设计和制备具有重要意义。

     

  • 图  1  大角羊角细管分布示意图与光学显微镜图[29]

    Figure  1.  Schematic of tubule distribution and optical microscopy of horn cross sections for bighorn sheep[29]

    图  2  仿羊角管状结构几何参数示意图

    Figure  2.  Schematic of the geometric parameters of horn-inspired tubular structure

    图  3  Charpy冲击试样示意图

    Figure  3.  Schematic of Charpy impact specimen

    图  4  Mark TwoTM 3D打印机

    Figure  4.  Mark TwoTM 3D Printer

    图  5  Instron CEAST 9350 落锤冲击实验系统

    Figure  5.  Instron CEAST 9350 drop-tower impact test system

    图  6  Onyx材料性能拉伸实验与仿真拟合曲线

    Figure  6.  Experiment and simulation curves of tensile properties for Onyx material

    图  7  有限元模型网格划分示意图

    Figure  7.  Demonstration of finite element model and meshing

    图  8  UBS和HTS实验结果与仿真结果力和位移、吸能和位移对比

    Figure  8.  Comparison of force and displacement, energy absorption and displacement between experimental and simulation results of UBS and HTS

    图  9  UBS与HTS的实验和模拟裂纹扩展对比

    Figure  9.  Comparison of experimental and simulated crack growth of UBS and HTS

    图  10  冲击各阶段仿真结果:(a) UBS;(b) HTS

    Figure  10.  Simulation results of each stage of impact: (a) UBS; (b) HTS

    图  11  横向间距和细管直径对HTS冲击吸收能的影响:(a) 横向间距的影响;(b) 细管直径的影响

    Figure  11.  Effect of transverse spacing and tube diameter on impact absorption energy of HTS: (a) Effect of transverse spacing; (b) Effect of tube diameter

    图  12  HTS-T2.89仿真结果示意图

    Figure  12.  Schematic of simulation results of HTS-T2.89

    图  13  HTS-D系列仿真结果示意图:(a)HTS-D0.5;(b)HTS-D1;(c) HTS-D1.5

    Figure  13.  Schematic of simulation results of HTS-D series: (a) HTS-D0.5; (b)HTS-D1; (c) HTS-D1.5

    图  14  弹性模量和屈服强度对HTS冲击吸收能的影响:(a) 弹性模量的影响;(b) 屈服强度的影响

    Figure  14.  Effect of elastic modulus and yield strength on impact absorption energy of HTS: (a) Effect of elastic modulus; (b) Effect of yield strength

    图  15  HTS-E3000载荷下降阶段仿真结果示意图

    Figure  15.  Schematic of simulation results of HTS-E3000 at load reduction stage

    图  16  HTS-S系列仿真结果示意图:(a)HTS-S1.5;(b)HTS-S1;(c) HTS-S0.5

    Figure  16.  Schematic of simulation results of HTS-S series: (a) HTS-S1.5; (b)HTS-S1; (c) HTS-S0.5

    表  1  未仿生结构(UBS)与仿羊角管状结构(HTS)几何参数

    Table  1.   Geometric parameters of un-biomimetic structure (UBS) and horn-inspired tubular structure (HTS)

    Tube diameter
    /mm
    Longitudinal spacing/mmTransverse spacing/mm
    UBS---
    HTS12.52
    下载: 导出CSV

    表  2  Onyx材料的弹性性能

    Table  2.   Elastic properties of Onyx material

    Density/(kg·m-3)Elastic
    modulus/GPa
    Poisson’s ratioYield stress/MPaFracture strain/%Fracture
    energy/(kJ·m2)
    12002.00.354.1720.5520
    下载: 导出CSV

    表  3  Onyx材料在真实应力应变下的塑性性能

    Table  3.   Plastic properties of Onyx material in terms of true stress and strain

    Yield stress/MPa54.1758.1760.2461.2362.0164.1566.6268.64
    Plastic strain/%00.511.52.57.512.517.5
    下载: 导出CSV

    表  4  有限元模型HTS-T与HTS-D系列几何参数

    Table  4.   Geometric parameters of HTS-T and HTS-D finite element model series

    Tube diameter/mmLongitudinal spacing/mmTransverse spacing/mm
    HTS-T212.52
    HTS-T2.512.52.5
    HTS-T2.8912.52.89
    HTS-T412.54
    HTS-D0.50.52.52
    HTS-D112.52
    HTS-D1.51.52.52
    下载: 导出CSV

    表  5  有限元模型HTS-E与HTS-S系列材料性能

    Table  5.   Material properties of HTS-E and HTS-S finite element model series

    Elastic modulus/GPaPlastic properties
    HTS-E10001.0Same as table 3
    HTS-E15001.5Same as table 3
    HTS-E20002.0Same as table 3
    HTS-E25002.5Same as table 3
    HTS-E30003.0Same as table 3
    HTS-S0.52.0The yield strength is one-half of Onyx material (as shown in table 6(a))
    HTS-S12.0The yield strength is consistent with Onyx material (as shown in table 3)
    HTS-S1.52.0The yield strength is 1.5 times that of Onyx material (as shown in table 6(b))
    下载: 导出CSV

    表  6  有限元模型HTS-S0.5和HTS-S1.5系列的材料塑性性能参数

    Table  6.   Plastic properties of HTS-S0.5 and HTS-S1.5 finite element model series

    Yield stress/MPa27.0929.0930.1230.6231.0132.0833.3134.32
    Plastic strain/%00.511.52.57.512.517.5
    Yield stress/MPa81.2687.2690.3691.8593.0296.2399.93102.96
    Plastic strain/%00.511.52.57.512.517.5
    下载: 导出CSV
  • [1] WEGST U G K, BAI H, SAIZ E, et al. Bioinspired structural materials[J]. Nature Materials,2015,14(1):23-36. doi: 10.1038/nmat4089
    [2] JI B H, GAO H J. Mechanical principles of biological nanocomposites[J]. Annual Review of Materials Research,2010,40:77-100. doi: 10.1146/annurev-matsci-070909-104424
    [3] MEYERS M A, CHEN P Y, LIN Y M, et al. Biological materials: structure and mechanical properties[J]. Progress in Materials Science,2008,53(1):1-206. doi: 10.1016/j.pmatsci.2007.05.002
    [4] WEGST U G K, ASHBY M F. The mechanical efficiency of natural materials[J]. Philosophical Magazine,2004,84(21):2167-2186. doi: 10.1080/14786430410001680935
    [5] WEGST U G K. Bamboo and wood in musical instruments[J]. Annual Review of Materials Research,2008,38:323-349. doi: 10.1146/annurev.matsci.38.060407.132459
    [6] WEAVER J C, MILLIRON G W, MISEREZ A, et al. The stomatopod dactyl club: a formidable damage-tolerant biological hammer[J]. Science,2012,336(6086):1275-1280. doi: 10.1126/science.1218764
    [7] LAUNEY M E, BUEHLER M J, RITCHIE R O. On the mechanistic origins of toughness in bone[J]. Annual Review of Materials Research,2010,40:25-53. doi: 10.1146/annurev-matsci-070909-104427
    [8] WANG R Z, GUPTA H S. Deformation and fracture mechanisms of bone and nacre[J]. Annual Review of Materials Research,2011,41:41-73. doi: 10.1146/annurev-matsci-062910-095806
    [9] 朱体朋. 牛科动物犄角宏微观力学行为研究[D]. 重庆: 重庆大学, 2017.

    ZHU Tipeng. Investigation of macro-micro mechanical behaviors of bovid horns[D]. Chongqing: Chongqing University, 2017(in Chinese).
    [10] CHEN P Y, MCKITTRICK J, MEYERS M A. Biological materials: functional adaptations and bioinspired designs[J]. Progress in Materials Science,2012,57(8):1492-1704. doi: 10.1016/j.pmatsci.2012.03.001
    [11] STUDART A R. Towards high-performance bioinspired composites[J]. Advanced Materials,2012,24(37):5024-5044. doi: 10.1002/adma.201201471
    [12] HUANG W, RESTREPO D, JUNG J Y, et al. Multiscale toughening mechanisms in biological materials and bioinspired designs[J]. Advanced Materials,2019,31(43):1901561. doi: 10.1002/adma.201901561
    [13] NALEWAY S E, PORTER M M, MCKITTRICK J, et al. Structural design elements in biological materials: application to bioinspiration.[J]. Advanced materials,2015,27(37):5455-5476. doi: 10.1002/adma.201502403
    [14] 阿拉腾沙嘎. 仿珍珠贝Al合金/SiC层状复合材料的制备、组织与性能[D]. 吉林: 吉林大学, 2016.

    ALATENSHAGA. Fabrication of nacre-inspired Al alloy/SiC lamellar composites and their microstructures and properties[D]. Jilin: Jilin University, 2016(in Chinese).
    [15] 张学骜, 刘长利, 王建方, 等. 仿珍珠层自组装制备有机/无机纳米复合薄膜[J]. 复合材料学报, 2006(4):47-51. doi: 10.3321/j.issn:1000-3851.2006.04.009

    ZHANG Xueao, LIU Changli, WANG Jianfang, et al. Self-assembled organic/inorganic nanocomposite thin film of mimic nacre[J]. Acta Materiae Compositae Sinica,2006(4):47-51(in Chinese). doi: 10.3321/j.issn:1000-3851.2006.04.009
    [16] ZHANG P, HEYNE M A, TO A C. Biomimetic staggered composites with highly enhanced energy dissipation: design, modeling, and test[J]. Journal of the Mechanics & Physics of Solids,2015,83:285-300.
    [17] GU G X, TAKAFFOLI M, HSIEH A J, et al. Biomimetic additive manufactured polymer composites for improved impact resistance[J]. Extreme Mechanics Letters,2016,9:317-323. doi: 10.1016/j.eml.2016.09.006
    [18] KO K, JIN S, LEE S E, et al. Impact resistance of nacre-like composites diversely patterned by 3 D printing[J]. Composite Structures,2020,238:111951. doi: 10.1016/j.compstruct.2020.111951
    [19] GRUNENFELDER L K, SUKSANGPANYA N, SALINAS C, et al. Bio-inspired impact-resistant composites[J]. Acta Biomaterialia,2014,10(9):3997-4008. doi: 10.1016/j.actbio.2014.03.022
    [20] SUKSANGPANYA N, YARAGHI N A, PIPES R B, et al. Crack twisting and toughening strategies in Bouligand architectures[J]. International Journal of Solids and Structures,2018,150:83-106. doi: 10.1016/j.ijsolstr.2018.06.004
    [21] RIBBANS B, LI Y J, TAN T. A bioinspired study on the interlaminar shear resistance of helicoidal fiber structures[J]. Journal of the Mechanical Behavior of Biomedical Materials,2016,56:57-67. doi: 10.1016/j.jmbbm.2015.11.004
    [22] YARAGHI N A, GUARIN-ZAPATA N, GRUNENFELDER L K, et al. A sinusoidally-architected helicoidal biocomposite[J]. Advanced Materials,2016,28(32):6835-6844. doi: 10.1002/adma.201600786
    [23] REN L Q, ZHOU X L, LIU Q P, et al. 3 D magnetic printing of bio-inspired composites with tunable mechanical properties[J]. Journal of Materials Science,2019,53(20):14274-14286.
    [24] TOMBOLATO L, NOVITSKAYA E E, CHEN P Y, et al. Microstructure, elastic properties and deformation mechanisms of horn keratin[J]. Acta Biomaterialia,2010,6(2):319-330. doi: 10.1016/j.actbio.2009.06.033
    [25] HUANG W, ZAHERI A, JUNG J Y, et al. Hierarchical structure and compressive deformation mechanisms of bighorn sheep (Ovis canadensis) horn[J]. Acta Biomaterialia,2017,64:1-14. doi: 10.1016/j.actbio.2017.09.043
    [26] KITCHENER A. An analysis of the forces of fighting of the blackbuck (Antilope cervicapra) and the bighorn sheep (Ovis canadensis) and the mechanical design of the horn of bovids[J]. Journal of Zoology,1988,214(1):1-20. doi: 10.1111/j.1469-7998.1988.tb04983.x
    [27] KASAPI M A. Design for fracture control and the mechanical properties of the equine hoof wall[D]. Canada: The University of British Columbia, 1998.
    [28] KASAPI M A, GOSLINE J M. Micromechanics of the equine hoof wall: optimizing crack control and material stiffness through modulation of the properties of keratin[J]. Journal of Experimental Biology,1999,202(4):377-391. doi: 10.1242/jeb.202.4.377
    [29] HUANG W. Impact resistant and energy absorbent natural keratin materials: horns and hooves[D]. USA: University of California San Diego, 2018.
    [30] WANG B F, ZHOU B Q, ZHANG X Y. A high toughness and light weight armor structure bioinspired design based on a bovine hoof wall[J]. Materials Letters,2020,264:127296. doi: 10.1016/j.matlet.2020.127296
    [31] INGROLE A, AGUIRRE T G, FULLER L, et al. Bioinspired energy absorbing material designs using additive manufacturing[J]. Journal of the Mechanical Behavior of Biomedical Materials,2021,119:104518. doi: 10.1016/j.jmbbm.2021.104518
    [32] American Society of Testing Materials. Standard test method for determining the Charpy impact resistance of notched specimens of plastics: ASTM D6110-18[S]. West Conshohocken: ASTM International, 2018.
    [33] HETRICK D R, SANEI S H R, BAKIS C E, et al. Evaluating the effect of variable fiber content on mechanical properties of additively manufactured continuous carbon fiber composites[J]. Journal of Reinforced Plastics and Composites,2020,40(9-10):365-377.
    [34] SAUER M. Evaluation of the mechanical properties of 3 D printed carbon fiber composites[D]. USA: South Dakota State University, 2018.
    [35] WRIGHT W J, KOERNER H, RAPKING D, et al. Rapid fiber alignment quantification in direct write printing of short fiber reinforced composites[J]. Composites Part B:Engineering,2022,236:109814. doi: 10.1016/j.compositesb.2022.109814
    [36] NTENGA R, LAHE S F, ATEBA J A, et al. Numerical simulations of Azobé/urea formaldehyde wood plastic composite behaviors under Charpy impact and low-velocity drop weight tests[J]. Journal of Composites Science,2018,2(4):60. doi: 10.3390/jcs2040060
    [37] MIZUKAMI K, FUNABA K, OGI K. Design and three-dimensional printing of carbon-fiber-composite elastic metamaterials with inertial amplification mechanisms[J]. Journal of Sound and Vibration,2021,513:116412. doi: 10.1016/j.jsv.2021.116412
    [38] KRZIKALLA D, MESICEK J, HALAMA R, et al. On flexural properties of additive manufactured composites: Experimental, and numerical study[J]. Composites Science and Technology,2022,218:109182. doi: 10.1016/j.compscitech.2021.109182
    [39] American Society of Testing Materials. Standard test method for tensile properties of plastics: ASTM D638-14[S]. West Conshohocken: ASTM International, 2014.
  • 加载中
计量
  • 文章访问数:  62
  • HTML全文浏览量:  40
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-21
  • 录用日期:  2022-05-20
  • 修回日期:  2022-05-19
  • 网络出版日期:  2022-06-13

目录

    /

    返回文章
    返回