留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Fe2O3-石墨烯-碳纳米管复合材料制备条件对载硫性能的影响

董伟 孟令强 赵美娜 沈丁 孙闻 杨绍斌 王文博 纪凌枭 杨宗松 刘耀汉

董伟, 孟令强, 赵美娜, 等. Fe2O3-石墨烯-碳纳米管复合材料制备条件对载硫性能的影响[J]. 复合材料学报, 2023, 40(3): 1501-1511. doi: 10.13801/j.cnki.fhclxb.20220424.001
引用本文: 董伟, 孟令强, 赵美娜, 等. Fe2O3-石墨烯-碳纳米管复合材料制备条件对载硫性能的影响[J]. 复合材料学报, 2023, 40(3): 1501-1511. doi: 10.13801/j.cnki.fhclxb.20220424.001
DONG Wei, MENG Lingqiang, ZHAO Meina, et al. Effect of preparation conditions of Fe2O3-graphene-carbon nanotube composites on sulfur loading properties[J]. Acta Materiae Compositae Sinica, 2023, 40(3): 1501-1511. doi: 10.13801/j.cnki.fhclxb.20220424.001
Citation: DONG Wei, MENG Lingqiang, ZHAO Meina, et al. Effect of preparation conditions of Fe2O3-graphene-carbon nanotube composites on sulfur loading properties[J]. Acta Materiae Compositae Sinica, 2023, 40(3): 1501-1511. doi: 10.13801/j.cnki.fhclxb.20220424.001

Fe2O3-石墨烯-碳纳米管复合材料制备条件对载硫性能的影响

doi: 10.13801/j.cnki.fhclxb.20220424.001
基金项目: 国家自然科学基金青年基金(21808095);辽宁工程技术大学学科创新团队资助项目(LNTU20TD-16);辽宁省教育厅基本科研项目(LJKZ0339);辽宁工程技术大学学科创新团队资助项目(LNTU20TD-09)
详细信息
    通讯作者:

    赵美娜,硕士,研究方向为新能源材料 E-mail: zhaomeina19880724@163.com

  • 中图分类号: O646

Effect of preparation conditions of Fe2O3-graphene-carbon nanotube composites on sulfur loading properties

Funds: National Natural Science Foundation of China (21808095); Project of Discipline Innovation Team of Liaoning Technical University (LNTU20 TD-16); Basic Research Project of Education Department of Liaoning Province (LJKZ0339); Funded Project of Discipline Innovation Team of Liaoning Technical University (LNTU20 TD-09)
  • 摘要: 锂硫电池是传统锂离子电池最有前途的替代品之一,多硫化物的溶解和导电性差是制约锂硫电池应用的两个重要因素。通过水热法合成了Fe2O3-还原氧化石墨烯(RGO)-碳纳米管(CNT)复合载硫材料,并通过调节氨水浓度,实现了复合材料中Fe2O3的颗粒尺寸的有效调控,发现小尺寸的Fe2O3颗粒具有更好的吸附和催化作用。合成的Fe2O3-RGO-CNT-S正极材料在1 C倍率下首次放电容量为1286 mA·h/g,循环500圈后剩余718 mA·h/g,每圈的容量衰减率为0.08%。在0.2、0.5、1、2和4 C倍率下的平均比容量为983、825、769、673和604 mA·h/g,具有良好的倍率性能。在5 C倍率下循环500次仍剩余527 mA·h/g,具有良好的大电流循环性能。Fe2O3-RGO-CNT-S正极材料特别适用于高性能锂硫电池,具有优异的电化学性能主要是由于RGO和CNT三维导电网络提供了强电子传输路径、丰富的孔隙结构、硫与RGO和CNT构成的三维导电网络充分接触。

     

  • 图  1  RGO-CNT-25、Fe2O3-RGO-CNT-2.5和Fe2O3-RGO-CNT-25 (a) 和RGO-CNT-S-25、Fe2O3-RGO-CNT-S-2.5和Fe2O3-RGO-CNT-S-25 (b) 的XRD图谱

    Figure  1.  XRD patterns of RGO-CNT-25, Fe2O3-RGO-CNT-2.5 and Fe2O3-RGO-CNT-25 (a), RGO-CNT-S-25, Fe2O3-RGO-CNT-S-2.5 and Fe2O3-RGO-CNT-S-25 (b)

    图  2  RGO-CNT-25 (a)、Fe2O3-RGO-CNT-2.5 (b) 和Fe2O3-RGO-CNT-25 (c) 的SEM图像;(d) Fe2O3-RGO-CNT-S-2.5面扫原图像;(e) Fe2O3-RGO-CNT-S-2.5 EDS元素分布图;(f) 吸附实验照片

    Figure  2.  SEM images of RGO-CNT-25 (a), Fe2O3-RGO-CNT-2.5 (b) and Fe2O3-RGO-CNT-25 (c); (d) Surface scan image of Fe2O3-RGO-CNT-S-2.5; (e) EDS element distribution diagrams of Fe2O3-RGO-CNT-S-2.5; (f) Picture of adsorption experiment

    图  3  Fe2O3-RGO-CNT-2.5 (a) 和Fe2O3-RGO-CNT-25 (b) 的TEM图像

    Figure  3.  TEM images of Fe2O3-RGO-CNT-2.5 (a) and Fe2O3-RGO-CNT-25 (b)

    图  4  Fe2O3-RGO-CNT和RGO-CNT的吸-脱附等温线 (a) 和孔径分布图 (b)

    Figure  4.  Adsorption-desorption isotherms (a) and pore size distribution (b) of Fe2O3-RGO-CNT and RGO-CNT

    V—Adsorption capacity; D—Diameter

    图  5  Fe2O3-RGO-CNT-S和RGO-CNT-S的首次充放电曲线 (a)、倍率图 (b)、0.5 C倍率下长循环性能曲线 (c)、1 C倍率下长循环性能曲线 (d)、5 C倍率下的长循环性能 (e)

    Figure  5.  First charge discharge curve (a), rate performances (b), long cycle performance curves at 0.5 C (c), long cycle performance curves at 1 C (d), long cycle performance at 5 C (e) of Fe2O3-RGO-CNT-S and RGO-CNT-S

    QL, QH—Specific discharge capacity at different stages

    图  6  RGO-CNT-S-25 (a)、Fe2O3-RGO-CNT-S-2.5 (b)、Fe2O3-RGO-CNT-S-25 (c) 的CV曲线;RGO-CNT-S-25、Fe2O3-RGO-CNT-S-25、Fe2O3-RGO-CNT-S-2.5的交流阻抗图谱 (d)

    Figure  6.  CV curves of RGO-CNT-S-25 (a), Fe2O3-RGO-CNT-S-2.5 (b) and Fe2O3-RGO-CNT-S-25 (c); (d) AC impedance spectra of RGO-CNT-S-25, Fe2O3-RGO-CNT-S-25 and Fe2O3-RGO-CNT-S-2.5

    Re—System resistance; Rf—Solid electrolyte interfacial layer resistance (SEI); Zw—Warburg impedance; Rct—Charge transfer resistance; CPE—Constant phase angle element

    表  1  复合材料的命名

    Table  1.   Naming of composites

    Sample FeCl3·6 H2O/mmol Ammonia water/wt% CNT/
    mL
    RGO/
    mL
    Fe2O3-RGO-CNT-25 1.5 25 100 100
    Fe2O3-RGO-CNT-2.5 1.5 2.5 100 100
    RGO-CNT-25 25 100 100
    Notes: RGO—Reduced graphene oxide; CNT—Carbon nanotube.
    下载: 导出CSV

    表  2  锂硫电池Fe2O3正极材料研究现状

    Table  2.   Research status of Fe2O3 cathode materials for lithium sulfur batteries

    SampleSulfur
    content/wt%
    Rate performances/
    C
    Number of
    cycles
    Capacity
    retention rate/%
    Residual discharge specific
    capacity/(mA·h·g−1)
    α-Fe2O3/S[39]66.50.510047.89442
    α-Fe2O3/S[26]75.00.220062.23389
    CNT-γ-Fe2O3/S[40]65.01500-545
    CNF-α-Fe2O3/S[27]54.0165043.10314
    RGO-α-Fe2O3/S[41]60.0250054.00380
    This work60.0150059.20718
    This work60.00.550059.10816
    下载: 导出CSV

    表  3  等效电路拟合电极阻抗参数

    Table  3.   Equivalent circuit fitting electrode impedance parameters

    SampleReRfRct
    RGO-CNT-S-253.337 6.9810.94
    Fe2O3-RGO-CNT-S-2.53.22713.5419.85
    Fe2O3-RGO-CNT-S-253.16834.0441.94
    下载: 导出CSV
  • [1] HONG X, JIN J, WU T, et al. A rGO-CNT aerogel covalently bonded with a nitrogen-rich polymer as a polysulfide adsorptive cathode for high sulfur loading lithium sulfur batteries[J]. Journal of Materials Chemistry A,2017,5:14775-14782. doi: 10.1039/C7TA03552G
    [2] LIU D, LI Y, ZHENG D, et al. Ammonia-treated ordered mesoporous carbons with hierarchical porosity and nitrogen-doping for lithium-sulfur batteries[J]. Chemistryselect,2017,2(24):7160-7168. doi: 10.1002/slct.201700656
    [3] QIU Y, LI W, ZHAO W, et al. High-rate, ultra long cycle-life lithium/sulfur batteries enabled by nitrogen-doped graphene[J]. Nano Letters,2014,14(8):4821. doi: 10.1021/nl5020475
    [4] WU H, XIA L, REN J, et al. A multidimensional and nitrogen-doped graphene/hierarchical porous carbon as a sulfur scaffold for high performance lithium sulfur batteries[J]. Electrochimica Acta,2018,278:83-92. doi: 10.1016/j.electacta.2018.05.032
    [5] 赵桂香, WAIHAFIZ Z A, 朱福良. 氮硫共掺杂多孔碳材料的制备及其在锂硫电池中的应用[J]. 电化学, 2021, 27(6):614-623.

    ZHAO Guixiang, WAIHAFIZ Z A, ZHU Fuliang. Nitrogen-sulfur Co-doped porous carbon preparation and its application in lithium-sulfur batteries[J]. Electrochemical Chemistry,2021,27(6):614-623(in Chinese).
    [6] ZHAO Y, BAKENOVA Z, ZHANG Y G, et al. High perfor-mance sulfur/nitrogen-doped graphene cathode for lithium/sulfur batteries[J]. Ionics,2015,21(7):1925-1930. doi: 10.1007/s11581-015-1376-4
    [7] GONG B, SONG X, SHI Y, et al. Understanding the inhibition of the shuttle effect of sulfides (S≤3) in lithium-sulfur batteries by heteroatom-doped graphene: First-principles study[J]. The Journal of Physical Chemistry C,2020,124:3644-3649. doi: 10.1021/acs.jpcc.9b10314
    [8] SHAN Z, HE Y, NING L, et al. Spontaneously rooting carbon nanotube incorporated N-doped carbon nanofibers as efficient sulfur host toward high performance lithium-sulfur batteries[J]. Applied Surface Science,2020,539:148209.
    [9] 黄雅盼, 孙晓刚, 王杰, 等. 羟基化多壁碳纳米管掺杂抑制锂硫电池的穿梭效应[J]. 复合材料学报, 2019, 36(5):1335-1341.

    HUANG Yapan, SUN Xiaogang, WANG Jie, et al. Inhibiting shuttle effect of lithium sulfur batteries by introducing hydroxylated multi-walled carbon nanotube[J]. Acta Materiae Compositae Sinica,2019,36(5):1335-1341(in Chinese).
    [10] LI Q, ZHANG Z, GUO Z, et al. Improved cyclability of lithium-sulfur battery cathode using encapsulated sulfur in hollow carbon nanofiber@nitrogen-doped porous carbon core–shell composite[J]. Carbon,2014,78:1-9. doi: 10.1016/j.carbon.2014.05.047
    [11] 杨玉艳, 周丽丽, 陈兴华, 等. 锂硫电池正极用氮掺杂的多孔碳纤维载体材料的研究[J]. 现代化工, 2021, 41(6):167-171.

    YANG Yuyan, ZHOU Lili, CHEN Xinghua, et al. Nitrogen-doped porous carbon fiber support materials for cathode of lithium sulfur battery[J]. Modern Chemical Industry,2021,41(6):167-171(in Chinese).
    [12] YUAN X, LIU B, HOU H, et al. Facile synthesis of mesoporous graphene platelets with in situ nitrogen and sulfur doping for lithium-sulfur batteries[J]. RSC Advances,2017,7(36):22567-22577. doi: 10.1039/C7RA01946G
    [13] LI Z, JIANG X, LIU J, et al. In situ template synthesis of hierarchical porous carbon used for high performance lithium-sulfur batteries[J]. RSC Advances,2018,8:4503-4513. doi: 10.1039/C7RA12978E
    [14] WANG X, LI G, LI M, et al. Reinforced polysulfide barrier by g-C3N4/CNT composite towards superior lithium-sulfur batteries[J]. Journal of Energy Chemistry,2021,53:234-240. doi: 10.1016/j.jechem.2020.05.036
    [15] ZHANG H, GAO Q, LI Z, et al. A rGO-based Fe2O3 and Mn3O4 binary crystals nanocomposite additive for high performance Li-S battery[J]. Electrochimica Acta,2020,343:136079. doi: 10.1016/j.electacta.2020.136079
    [16] ZHA C, WU D, ZHANG T, et al. A facile and effective sulfur loading method: direct drop of liquid Li2S8 on carbon coated TiO2 nanowire arrays as cathode towards commercializing lithium-sulfur battery[J]. Energy Storage Materials,2019,17:118-125. doi: 10.1016/j.ensm.2018.11.020
    [17] SHAN L, YURONG C, JING Y, et al. Entrapment of polysulfides by a Ketjen Black & mesoporous TiO2 modified glass fiber separator for high performance lithium-sulfur batteries[J]. Journal of Alloys and Compounds,2019,779:412-419. doi: 10.1016/j.jallcom.2018.11.261
    [18] WU J, LI S, YANG P, et al. S@TiO2 nanospheres loaded on PPy matrix for enhanced lithium-sulfur batteries[J]. Jour-nal of Alloys and Compounds,2019,783:279-285. doi: 10.1016/j.jallcom.2018.12.316
    [19] GUO Y, LI J, PITCHERI R, et al. Electrospun Ti4O7/C conductive nanofibers as interlayer for lithium-sulfur batteries with ultra long cycle life and high-rate capability[J]. Chemical Engineering Journal,2019,355:390-398. doi: 10.1016/j.cej.2018.08.143
    [20] WANG F, DING X, SHI R, et al. Facile synthesis of Ti4O7 on hollow carbon spheres with enhanced polysulfide binding for high-performance lithium-sulfur batteries[J]. Journal of Materials Chemistry A,2019,7(17):10494-10504. doi: 10.1039/C9TA00544G
    [21] LIN H, ZHANG S, ZHANG T, et al. A cathode-integrated sulfur-deficient Co9S8 catalytic interlayer for the reutilization of “Lost” polysulfides in lithium-sulfur batteries[J]. ACS Nano,2019,13(6):7073-7082. doi: 10.1021/acsnano.9b02374
    [22] WANG N, CHEN B, QIN K, et al. Rational design of Co9S8/CoO heterostructures with well-defined interfaces for lithium sulfur batteries: A study of synergistic adsorption-electrocatalysis function[J]. Nano Energy,2019,60:332-339. doi: 10.1016/j.nanoen.2019.03.060
    [23] GUO P, LIU D, LIU Z, et al. Dual functional MoS2/graphene interlayer as an efficient polysulfide barrier for advanced lithium-sulfur batteries[J]. Electrochimica Acta,2017,256:28-36. doi: 10.1016/j.electacta.2017.10.003
    [24] SUN Z, ZHANG J, YIN L, et al. Conductive porous vanadium nitride/graphene composite as chemical anchor of polysulfides for lithium-sulfur batteries[J]. Nature Communications,2017,8:14627. doi: 10.1038/ncomms14627
    [25] CUI Z, ZU C, ZHOU W, et al. Mesoporous titanium nitride-enabled highly stable lithium-sulfur batteries[J]. Advanced Materials,2016,28(32):6926-6931. doi: 10.1002/adma.201601382
    [26] ZHOU T, LV W, LI J, et al. Twinborn TiO2-TiN heterostructures enabling smooth trapping-diffusion-conversion of polysulfides towards ultralong life lithium-sulfur batteries[J]. Energy & Environmental Science,2017,10(7):1694-1703.
    [27] LIU T, SUN X, SUN S, et al. A robust and low-cost biomass carbon fiber@SiO2 interlayer for reliable lithium-sulfur batteries[J]. Electrochimica Acta,2019,295:684-692. doi: 10.1016/j.electacta.2018.10.168
    [28] KOU W, LI X, LIU Y, et al. Triple-layered carbon-SiO2 composite membrane for high energy density and long cycling Li-S batteries[J]. ACS Nano,2019,13(5):5900-5909. doi: 10.1021/acsnano.9b01703
    [29] LI L, REN R, WANG X, et al. High-performance nanostructure Fe2O3 synthesized via novel direct current electric arc method as sulfur-wrapping matrix for lithium-sulfur batteries[J]. International Journal of Energy Research,2022,46(2):1361-1369. doi: 10.1002/er.7253
    [30] RAULO A, GUPTA A, SRIVASTAVA R, et al. Excellent electrochemical performance of lithium-sulfur batteries via self-standing cathode from interwoven α-Fe2O3 integrated carbon nanofiber networks[J]. Journal of Electroanalyti-cal Chemistry,2020,880:114829.
    [31] WANG H, WEI D, ZHENG J, et al. Electrospinning MoS2-decorated porous carbon nanofibers for high-perfor-mance lithium-sulfur batteries[J]. ACS Applied Energy Materials,2020,3(12):11893-11899. doi: 10.1021/acsaem.0c02015
    [32] LEI T, LI X, WANG Z, et al. Lightweight reduced graphene oxide@MoS2 interlayer as polysulfide barrier for high-performance lithium-sulfur batteries[J]. ACS Applied Materials & Interfaces,2018,10(4):3707-3713.
    [33] BASAK M, RAHMAN M L, AHMED M F, et al. The use of X-ray diffraction peak profile analysis to determine the structural parameters of cobalt ferrite nanoparticles using Debye-Scherrer, Williamson-Hall, Halder-Wagner and size-strain plot: Different precipitating agent approach[J]. Journal of Alloys and Compounds,2022,895:162694. doi: 10.1016/j.jallcom.2021.162694
    [34] REN J, XIA L, ZHOU Y, et al. A reduced graphene oxide/nitrogen, phosphorus doped porous carbon hybrid framework as sulfur host for high performance lithium-sulfur batteries[J]. Carbon,2018,140:30-40. doi: 10.1016/j.carbon.2018.08.026
    [35] YU J, XIAO J, LI A, et al. Enhanced multiple anchoring and catalytic conversion of polysulfides by amorphous MoS3 nanoboxes for high-performance Li-S batteries[J]. Angewandte Chemie,2020,59:13071-13078. doi: 10.1002/anie.202004914
    [36] JIAO L, ZHANG C, GENG C, et al. Capture and catalytic conversion of polysulfides by in situ built TiO2-MXene heterostructures for lithium-sulfur batteries[J]. Advanced Energy Materials,2019,9(19):1900219. doi: 10.1002/aenm.201900219
    [37] LONG Q, PEI L, YI Y, et al. Enhanced cycling performance for lithium-sulfur batteries by a laminated 2 D g-C3N4/graphene cathode interlayer[J]. ChemSusChem,2019,12(1):213-223. doi: 10.1002/cssc.201802449
    [38] ZHAO Z, PATHAK R, WANG X, et al. Sulfiphilic FeP/rGO as a highly efficient sulfur host for propelling redox kinetics toward stable lithium-sulfur battery[J]. Electrochimica Acta,2020,364:137117. doi: 10.1016/j.electacta.2020.137117
    [39] ZHAO C, CAI S, XIN F, et al. Prussian blue-derived Fe2O3/sulfur composite cathode for lithium-sulfur batteries[J]. Materials Letters,2014,137(15):52-55.
    [40] JI A, YJ B, JO B, et al. γ-Fe2O3 nanoparticles anchored in MWCNT hybrids as efficient sulfur hosts for high-perfor-mance lithium sulfur battery cathode[J]. Journal of Electroanalytical Chemistry,2020,858:113806. doi: 10.1016/j.jelechem.2019.113806
    [41] CHENG Z, SN A, WEI L A, et al. Propelling polysulfides transformation for high-rate and long-life lithium-sulfur batteries[J]. Nano Energy,2017,33:306-312. doi: 10.1016/j.nanoen.2017.01.040
    [42] FANG R, ZHAO S, HOU P, et al. 3D interconnected electrode materials with ultrahigh areal sulfur loading for Li-S batteries[J]. Advanced Materials,2016,28(17):3374-3382. doi: 10.1002/adma.201506014
    [43] MIAO L, WANG W, YUAN K, et al. A lithium-sulfur cathode with high sulfur loading and high capacity per area: A binder-free carbon fiber cloth-sulfur material[J]. Chemical communications,2014,50(87):13231-13234. doi: 10.1039/C4CC03410D
    [44] ZHU R, LIN S, JIAO J, et al. Magnetic and mesoporous Fe3O4-modified glass fiber separator for high-performance lithium-sulfur battery[J]. Ionics,2020,26(16):2325-2334.
    [45] ZHANG Y, CHANG S, ZHANG D, et al. Flexible FeS@Fe2O3/CNT composite films as self-supporting anodes for high-performance lithium-ion batteries[J]. Nanotechnology,2021,32(28):285404. doi: 10.1088/1361-6528/abf194
    [46] ZOU K, LI N, DAI X, et al. Lightweight free-standing CeF3 nanorod/carbon nanotube composite interlayer for lithium-sulfur batteries[J]. ACS Applied Nano Materials,2020,3(6):5732-5742. doi: 10.1021/acsanm.0c00920
    [47] WANG P, ZENG R, YOU L, et al. Graphene-like matrix composites with Fe2O3 and Co3O4 as cathode materials for lithium sulfur batteries[J]. ACS Applied Nano Materials,2020,3(2):1382-1390. doi: 10.1021/acsanm.9b02250
    [48] KIM H, LEE J, AHN H, et al. Synthesis of three-dimensionally interconnected sulfur-rich polymers for cathode materials of high-rate lithium-sulfur batteries[J]. Nature Communications,2015,6:7278. doi: 10.1038/ncomms8278
    [49] PARK G D, JUNG D S, LEE J K, et al. Pitch-derived yolk-shell-structured carbon microspheres as efficient sulfur host materials and their application as cathode material for Li-S batteries[J]. Chemical Engineering Journal,2019,373:382-392. doi: 10.1016/j.cej.2019.05.038
    [50] CHUNG S H, MANTHIRAM A. A polyethylene glycol-supported microporous carbon coating as a polysulfide trap for utilizing pure sulfur cathodes in lithium-sulfur batteries[J]. Advanced Materials, 2014, 26(43): 7352-7357.
    [51] YE C, ZHANG L, GUO C, et al. A 3D hybrid of chemically coupled nickel sulfide and hollow carbon spheres for high performance lithium-sulfur batteries[J]. Advanced Functional Materials,2017,27:1702524. doi: 10.1002/adfm.201702524
    [52] HE W, HE X, DU M, et al. Three-dimensional functionalized carbon nanotubes/graphitic carbon nitride hybrid composite as sulfur host for high performance lithium-sulfur batteries[J]. The Journal of Physical Chemistry C,2019,123(26):15924-15934. doi: 10.1021/acs.jpcc.9b02356
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  775
  • HTML全文浏览量:  501
  • PDF下载量:  52
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-03
  • 修回日期:  2022-04-13
  • 录用日期:  2022-04-16
  • 网络出版日期:  2022-04-24
  • 刊出日期:  2023-03-15

目录

    /

    返回文章
    返回