留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高强钢绞线网/ECC加固RC梁二次受力试验

李可 陈翔 范家俊 牛自立 张哲

李可, 陈翔, 范家俊, 等. 高强钢绞线网/ECC加固RC梁二次受力试验[J]. 复合材料学报, 2023, 40(8): 4670-4681. doi: 10.13801/j.cnki.fhclxb.20221102.003
引用本文: 李可, 陈翔, 范家俊, 等. 高强钢绞线网/ECC加固RC梁二次受力试验[J]. 复合材料学报, 2023, 40(8): 4670-4681. doi: 10.13801/j.cnki.fhclxb.20221102.003
LI Ke, CHEN Xiang, FAN Jiajun, et al. Experiment on RC beams strengthened with high-strength steel strand meshes and ECC under secondary load[J]. Acta Materiae Compositae Sinica, 2023, 40(8): 4670-4681. doi: 10.13801/j.cnki.fhclxb.20221102.003
Citation: LI Ke, CHEN Xiang, FAN Jiajun, et al. Experiment on RC beams strengthened with high-strength steel strand meshes and ECC under secondary load[J]. Acta Materiae Compositae Sinica, 2023, 40(8): 4670-4681. doi: 10.13801/j.cnki.fhclxb.20221102.003

高强钢绞线网/ECC加固RC梁二次受力试验

doi: 10.13801/j.cnki.fhclxb.20221102.003
基金项目: 国家自然科学基金(U1804137;51879243;52108183);中国博士后基金(2020 M672236;2021 TQ0302);河南省交通运输厅科技项目(2021 J3)
详细信息
    通讯作者:

    范家俊,博士,副教授,研究方向为新型复合材料性能及结构加固 E-mail: jiajun.fan@zzu.edu.cn

  • 中图分类号: TU528.57;TB333

Experiment on RC beams strengthened with high-strength steel strand meshes and ECC under secondary load

Funds: National Natural Science Foundation of China (U1804137; 51879243; 52108183); China Postdoctoral Science Foundation (2020 M672236; 2021 TQ0302); Science and Technology Project of Henan Provincial Department of Transportation (2021 J3)
  • 摘要: 高强钢绞线网/工程水泥基复合材料(Engineered cementitious composites,ECC)作为新型高性能复合材料,充分利用了高强钢绞线网及ECC优良的力学性能,具有超高延性、韧性、优异的裂缝控制能力及强度高等优点。为探究二次受力对该新型复合材料加固钢筋混凝土(Reinforced concrete,RC)梁受弯性能的影响,本文考虑是否持载加固、原梁损伤程度、纵向高强钢绞线配筋率的影响,进行了高强钢绞线网/ECC加固RC梁受弯试验,分析了二次受力对加固梁受弯性能的影响机制,探明了各影响因素对持载加固RC梁受弯性能的影响规律。结果表明:采用高强钢绞线网/ECC持载加固RC梁,使原梁承载力、刚度、延性、韧性分别提升了38%~65%、20%~81%、0%~18%、33%~116%,且能很好约束RC梁裂缝而减小裂缝宽度;相比于卸载加固梁,持载加固梁的加固层由于存在明显应变滞后,对原梁混凝土裂缝约束效果变差,其受弯承载力、刚度、韧性有所降低,但其延性有所提高;持载加固梁的受弯承载力、刚度、延性、韧性随原梁损伤程度增加而降低,而随钢绞线配筋率的适当提高而增大。

     

  • 图  1  试件尺寸及配筋

    LVDT—Linear variable differential transformer; RC—Reinforced concrete

    Figure  1.  Specimen size and reinforcement

    图  2  高强钢绞线(HSWS)网及剪切销钉布置

    n—Number of HSWS; s—Distance between adjacent HSWS

    Figure  2.  Arrangement of high-strength steel wire strand (HSWS) meshes and shear pins

    图  3  典型ECC受拉应力-应变曲线

    Figure  3.  Typical tensile stress-strain curves of ECC

    图  4  试验加载装置

    Figure  4.  Loading device

    图  5  高强钢绞线(HSWS)网/ECC加固RC梁典型破坏模式

    Figure  5.  Typical failure modes of RC beams strengthened with high-strength steel wire strand (HSWS) meshes reinforced ECC

    图  6  高强钢绞线网/ECC加固RC梁弯矩-跨中挠度曲线

    Figure  6.  Bending moment versus mid-span deflection curves of RC beams strengthened with HSWS meshes reinforced ECC

    图  7  高强钢绞线网/ECC加固RC梁跨中弯矩-钢筋拉应变曲线

    Figure  7.  Bending moment versus tensile strain curves of RC beams strengthened with HSWS meshes reinforced ECC

    图  8  高强钢绞线网/ECC加固RC梁跨中弯矩-高强钢绞线应变曲线

    Figure  8.  Bending moment versus HSWS strain curves of RC beams strengthened with HSWS meshes reinforced ECC

    图  9  高强钢绞线网/ECC加固RC梁弯矩-混凝土压应变曲线

    Figure  9.  Bending moment versus concrete compressive strain curves of RC beams strengthened with HSWS meshes reinforced ECC

    图  10  高强钢绞线网/ECC加固RC梁弯矩-混凝土裂缝宽度曲线

    Figure  10.  Bending moment versus maximum crack width curves of RC beams strengthened with HSWS meshes reinforced ECC

    图  11  高强钢绞线网/ECC加固RC梁截面刚度-挠度曲线

    Figure  11.  Stiffness-deflection curves of RC beams strengthened with HSWS meshes reinforced ECC

    表  1  试件设计参数

    Table  1.   Specimen design parameters

    GroupSpecimen numberd
    /mm
    Preload level/%ρ
    /%
    s/mm
    (n)
    Load reinforcement
    ACSLA02.4 00.41330(5)Y
    CSLA12.4500.41330(5)Y
    CSLA22.4650.41330(5)Y
    CSLA32.4800.41330(5)Y
    BCSLB12.4650.24850(5)Y
    CSLB32.4650.57921(5)Y
    CUSLC12.4650.41330(5)N
    Notes: Specimen number (C—Loading status; U—Unloading Status; S—Strengthening; L—RC beam); d—Diameter of steel strand; ρ—Reinforcement ratio of longitudinal high-strength steel wire strand (HSWS); s—Spacing of longitudinal steel strands; n—Number of longitudinal steel strands; N—Not load reinforcement; Y—Load reinforcement.
    下载: 导出CSV

    表  2  工程水泥基复合材料(ECC)配合比

    Table  2.   Mix proportions of engineered cementitious composites (ECC)

    CementSandFly ashSilica powderWaterPVA
    fiber
    Water reducerThickening agent
    10.42.50.0730.8930.0720.04070.00182
    Note: PVA—Polyvinyl alcohol.
    下载: 导出CSV

    表  3  ECC材料性能

    Table  3.   Material properties of ECC

    fcu/
    MPa
    ftc/
    MPa
    εtc/%Es/
    GPa
    fet/
    MPa
    εu
    /%
    45.82.970.04618.14.552.13
    Notes: fcu—ECC compressive strength; ftc—ECC cracking strength; εtc—ECC cracking strain; Es—ECC elastic modulus; fet—ECC tensile strength; εu—ECC ultimate tensile strain.
    下载: 导出CSV

    表  4  高强钢绞线网/ECC加固RC梁受弯试验结果

    Table  4.   Bending test results of RC beams strengthened with HSWS meshes reinforced ECC

    Specimen numberMc/
    (kN·m)
    Mec-d/
    (kN·m)
    My/
    (kN·m)
    Mswy/
    (kN·m)
    Mu/
    (kN·m)
    Δy/
    mm
    Δu/
    mm
    ${\mu _\Delta }$Dmaxωc,0.8 y/
    mm
    ωc,0.9 y/
    mm
    ωc,y/
    mm
    L02.8612.7814.987.4623.303.12 876.030.200.270.36
    CSLA06.602.6219.9722.0624.309.0430.293.351894.150.140.190.29
    CSLA13.720.9818.9121.7923.509.0229.923.321744.050.180.210.29
    CSLA23.390.9317.0821.1222.778.8228.503.231509.680.210.230.30
    CSLA33.430.6616.1920.2521.858.8527.673.131384.420.300.310.34
    CSLB13.310.6815.1719.5620.707.7424.533.171169.790.210.230.32
    CSLB33.351.0617.7022.3124.668.0829.713.681710.610.210.220.29
    USLC12.4719.2019.9623.308.8027.503.131519.750.210.220.29
    Notes: Mc—Cracking moment of concrete; Mec-d—Absolute value of ECC cracking moment minus pre-damage moment; My—Yielding moment of the specimen; Mswy—Nominal yield moment of steel strand; Mu—Ultimate bending moment of the specimen; Δy—Deflection of the specimen at My; Δu—Deflection of the specimen at Mu; ${\mu _\Delta }$—Ductility coefficient of the specimen; Dmax—Flexural toughness coefficient of the specimen; ωc,0.8 y—Concrete crack width at 80%My; ωc,0.9 y—Concrete crack width at 90%My; ωc,y—Concrete crack width at My.
    下载: 导出CSV
  • [1] LI V C. On engineered cementitious composites (ECC)[J]. Journal of Advanced Concrete Technology,2003,1(3):215-230. doi: 10.3151/jact.1.215
    [2] LEE B Y, CHO C G, LIM H J, et al. Strain hardening fiber reinforced alkali-activated mortar-A feasibility study[J]. Construction and Building Materials,2012,37:15-20. doi: 10.1016/j.conbuildmat.2012.06.007
    [3] KAN L L, SHI H S, SAKULICH A R, et al. Self-healing characterization of engineered cementitious composite materials[J]. ACI Materials Journal,2010,107(6):617-624.
    [4] 余江滔, 许万里, 张远淼. ECC-混凝土黏结界面断裂试验研究[J]. 建筑材料学报, 2015, 18(6):958-963, 970. doi: 10.3969/j.issn.1007-9629.2015.06.008

    YU Jiangtao, XU Wanli, ZHANG Yuanmiao. Experiment study on fracture property of ECC-concrete interface[J]. Journal of Building Materials,2015,18(6):958-963, 970(in Chinese). doi: 10.3969/j.issn.1007-9629.2015.06.008
    [5] 朱方之, 王鹏刚, 赵铁军, 等. SHCC修复试件黏结滑移性能研究[J]. 建筑材料学报, 2016, 19(1):72-77. doi: 10.3969/j.issn.1007-9629.2016.01.012

    ZHU Fangzhi, WANG Penggang, ZHAO Tiejun, et al. Studies on bond slippage properties of concrete specimen repaired with strain hardening cementitious composites (SHCC)[J]. Journal of Building Materials,2016,19(1):72-77(in Chinese). doi: 10.3969/j.issn.1007-9629.2016.01.012
    [6] ZHENG A H, LIU Z Z, LI F P, et al. Experimental investigation of corrosion-damaged RC beams strengthened in flexure with FRP grid-reinforced ECC matrix composites[J]. Engineering Structures,2021,244:112779. doi: 10.1016/j.engstruct.2021.112779
    [7] 乔治, 潘钻峰, 梁坚凝, 等. ECC/RC组合梁受弯性能试验研究与分析[J]. 东南大学学报(自然科学版), 2017, 47(4):724-731.

    QIAO Zhi, PAN Zuanfeng, LIANG Jianning, et al. Experimental study and analysis of flexural behavior of ECC/RC composite beams[J]. Journal of Southeast University (Natural Science Edition),2017,47(4):724-731(in Chinese).
    [8] 袁微微, 杜文平, 杨才千, 等. 二次受力下PVA-RFCC加固RC梁抗弯性能试验研究[J]. 建筑结构, 2020, 50(15):15-19, 41.

    YUAN Weiwei, DU Wenping, YANG Caiqian, et al. Experimental study on flexural behavior of RC beams strengthened with PVA-RFCC under secondary load[J]. Building Structure,2020,50(15):15-19, 41(in Chinese).
    [9] 卜良桃, 陈军, 鲁晨. PVA-ECC加固RC足尺梁二次受力试验研究[J]. 湖南大学学报(自然科学版), 2011, 38(1):1-7.

    BU Liangtao, CHEN Jun, LU Chen. Experiment on full-scale RC beam reinforced by polyvinyl alcohol-engineered cementitious composite mortar in flexure subjected to secondary load[J]. Journal of Hunan University (Natural Science Edition),2011,38(1):1-7(in Chinese).
    [10] 林于东, 宗周红, 林秋峰. 高强钢绞线网-聚合物砂浆加固混凝土及预应力混凝土梁的抗弯性能试验研究[J]. 工程力学, 2012, 29(9):141-149. doi: 10.6052/j.issn.1000-4750.2011.04.0193

    LIN Yudong, ZONG Zhouhong, LIN Qiufeng. Experiment study on flexural behavior of RC/PRC beams strengthened with high strength steel wire mesh and permeable polymer mortar[J]. Engineering Mechanics,2012,29(9):141-149(in Chinese). doi: 10.6052/j.issn.1000-4750.2011.04.0193
    [11] LI K, LIU W K, ZHANG K, et al. Bond behavior of stainless steel wire ropes embedded in engineered cementitious composites[J]. Construction and Building Materials,2021,281:122622. doi: 10.1016/j.conbuildmat.2021.122622
    [12] 李可, 赵佳丽, 李志强, 等. 高强钢绞线网增强ECC抗弯加固无损RC梁试验[J]. 复合材料学报, 2022, 39(7):3428-3440.

    LI Ke, ZHAO Jiali, LI Zhiqiang, et al. Experiment on non-damaged RC beams strengthened by high-strength steel wire strand meshes reinforced ECC in bending[J]. Acta Materiae Compositae Sinica,2022,39(7):3428-3440(in Chinese).
    [13] WANG X L, YANG G H, QIAN W W, et al. Tensile behavior of high-strength stainless steel wire rope (HSSSWR)-reinforced ECC[J]. International Journal of Concrete Structures and Materials,2021,15(1):1-15. doi: 10.1186/s40069-021-00480-x
    [14] 李可, 卫垚鑫, 金蕾蕾, 等. 高强不锈钢绞线网/ECC约束混凝土抗压强度[J]. 华中科技大学学报(自然科学版), 2021, 49(12):126-132.

    LI Ke, WEI Yaoxing, JIN Leilei, et al. Compressive strength of concrete confined by high-strength stainless steel stranded wire meshes and engineered cementitious composites[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition),2021,49(12):126-132(in Chinese).
    [15] 李苗浩夫. 高强不锈钢绞线网/ECC加固钢筋混凝土柱受压性能研究[D]. 郑州: 郑州大学, 2019.

    LIMIAO Haofu. Research on compressive performance of reinforced concrete columns strengthened by high-strength stainless steel wire mesh/ECC[D]. Zhengzhou: Zhengzhou University, 2019(in Chinese).
    [16] 周擎威. 高强不锈钢绞线与ECC黏结性能试验研究[D]. 郑州: 郑州大学, 2018.

    ZHOU Qingwei. Experimental study on the bonding performance between high-strength stainless steel strand and EEC[D]. Zhengzhou: Zhengzhou University, 2018(in Chinese).
    [17] NAPOLI A, REALFONZO R. Reinforced concrete beams strengthened with SRP/SRG systems: Experimental investigation[J]. Construction and Building Materials,2015,93(2):654-677.
    [18] 中华人民共和国住房和城乡建设部. 混凝土结构试验方法标准: GB/T 50152—2012[S]. 北京: 中国建筑工业出版社, 2012.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Standard for test method of concrete structures: GB/T 50152—2012[S]. Beijing: China Architecture & Building Press, 2012(in Chinese).
    [19] DONG S F, ZHOU D C, ASHRAF A, et al. Flexural toughness and calculation model of super-fine stainless wire reinforced reactive powder concrete[J]. Cement and Concrete Composites,2019,104:103367. doi: 10.1016/j.cemconcomp.2019.103367
    [20] 黄华. 高强钢绞线网—聚合物砂浆加固钢筋混凝土梁式桥试验研究与机理分析[D]. 西安: 长安大学, 2008.

    HUANG Hua. Experimental study and theoretical analysis on strengthening RC girder bridge with steel wire mesh and polymer mortar[D]. Xi'an: Chang'an University, 2008(in Chinese).
  • 加载中
图(11) / 表(4)
计量
  • 文章访问数:  768
  • HTML全文浏览量:  325
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-26
  • 修回日期:  2022-10-10
  • 录用日期:  2022-10-22
  • 网络出版日期:  2022-11-02
  • 刊出日期:  2023-08-15

目录

    /

    返回文章
    返回