Thermal conductivity and electrical properties of three-dimensional porous aluminum nitride/epoxy composites
-
摘要: 环氧树脂(EP)是一种典型的电子封装绝缘材料,但其导热系数(小于0.2 W/(m·K))较低,提高其导热性是解决电子器件散热问题的有效办法。本文通过构筑三维多孔的氮化铝骨架(3D-AlN),制备得到3D-AlN/EP复合材料。SEM形貌和XRD物相表征结果证实3D-AlN骨架及3D-AlN/EP复合材料的成功制备。利用TGA精确测量3D-AlN骨架所占复合材料的质量分数,通过与含有不同含量随机分布的AlN/EP (Random AlN/EP)复合材料对比发现,3D-AlN/EP复合材料的导热系数要高于Random AlN/EP复合材料,45.48wt%3D-AlN/EP复合材料的室温(25℃)导热系数为1.00 W/(m·K),是纯EP(0.18 W/(m·K))的5.6倍。利用理论模型(Fogyel、Agari)计算复合材料的界面热阻,发现3D-AlN/EP复合材料相比于Random AlN/EP具有更低的填料与填料间界面热阻,分别为2.704×105 K·W−1、4.019×105 K·W−1。电性能测试结果表明,45.48wt%3D-AlN/EP复合材料具良好的介电性能及绝缘性能(体积电阻率为4.16×1011 Ω·cm)。本研究从封装绝缘材料改性角度为电子器件散热问题提供了一种有效解决方案。Abstract: Epoxy resin (EP) is a typical insulating material for electronic packaging, but its thermal conductivity (less than 0.2 W/(m·K)) is low, and improving its thermal conductivity is an effective way to solve the heat dissipation problem of electronic devices. In this paper, 3D-AlN/EP composites were prepared by constructing a three-dimensional porous aluminum nitride skeleton (3D-AlN). The SEM morphology and XRD phase characterization results confirmed the successful preparation of 3D-AlN skeleton and 3D-AlN/EP composites. The mass fraction of the composite accounted for by the 3D-AlN skeleton was precisely measured using TGA, and by comparing with different contents of random distribution AlN/EP (Random AlN/EP) composites, it was found that the thermal conductivity of 3D-AlN/EP composites was higher than that of Random AlN/EP composites, the thermal conductivity of the 45.48wt%3D-AlN/EP composite at room temperature (25℃) was 1.00 W/(m·K), which was 5.6 times higher than that of pure EP (0.18 W/(m·K)). The interfacial thermal resistance of the composites was calculated using the theoretical model (Fogyel, Agari), and it was found that the 3D-AlN/EP composites had lower filler-to-filler interfacial thermal resistance compared to Random AlN/EP, with 2.704×105 K·W−1 and 4.019×105 K·W−1, respectively. The electrical properties showed that the 45.48wt%3D-AlN/EP composite had good dielectric and insulating properties (volume resistivity is 4.16×1011 Ω·cm). This study provides an effective solution to the heat dissipation problem of electronic devices from the perspective of package insulation material modification.
-
图 2 (a) 3D-AlN骨架的SEM图像;(b) 图2(a)的局部放大SEM图像;(c) 3D-AlN/EP复合材料的SEM图像;((d), (e)) 对于图2(c)的能谱及元素分布
Figure 2. (a) SEM image of 3D-AlN framework; (b) Partially enlarged SEM image according to Fig. 2(a); (c) SEM image of 3D-AlN/EP composite; ((d), (e)) Energy spectrum and element distribution according to Fig. 2(c), respectively
图 4 (a) 不同3D-AlN含量的随机分布AlN/EP及3D-AlN/EP复合材料的导热系数及Foygel非线性拟合;(b) Agari模型线性拟合;(c) 不同3D-AlN含量3D-AlN/EP复合材料导热系数随温度变化的曲线;(d) 不同3D-AlN含量3D-AlN/EP复合材料的DSC图谱
Figure 4. (a) Thermal conductivity and Foygel nonlinear fit of randomly distributed AlN/EP and 3D-AlN/EP composites with different contents of 3D-AlN; (b) Linear fit of Agari model; (c) Thermal conductivity curves of 3D-AlN/EP composites with different contents of 3D-AlN as a function of temperature; (d) DSC spectra of 3D-AlN/EP composites with different contents of 3D-AlN
Cf—Ability of the filler to form continuity; Cm—Effect of the filler on the structure of the matrix; λ—Thermal conductivity of composites
表 1 随机分布的AlN/EP和3D-AlN/EP复合材料的参数计算结果
Table 1. Calculation results of parameters for Random AlN/EP and 3D-AlN/EP composites
Composites K0 Vc/vol% β Rc/(105 K·W−1) Random AlN/EP 3.412 0.0994 0.83392 4.019 3D-AlN/EP 3.615 0.0597 0.56296 2.704 Notes: K0—Pre-exponential factor; Vc—Critical volume fraction of filler; β—Conductivity exponent that depends on the aspect of filler; Rc—Interface thermal resistance. -
[1] ZHANG T, YANG L, ZHANG C, et al. Polymer dielectric films exhibiting superior high-temperature capacitive performance by utilizing an inorganic insulation interlayer[J]. Materials Horizons,2022,9(4):1273-1282. doi: 10.1039/D1MH01918J [2] XUX, CHEN J, ZHOU J, et al. Thermal conductivity of polymers and their nanocomposites[J]. Advanced Materials,2018,30(17):1705544. [3] CHENG Y L, LEE C Y, HUNG W J, et al. Comparison of various low dielectric constant materials[J]. Thin Solid Films,2018,660:871-878. doi: 10.1016/j.tsf.2018.02.042 [4] ZENG X, YE L, GUO K, et al. Fibrous epoxy substrate with high thermal conductivity and low dielectric property for flexible electronics[J]. Advanced Electronic Materials,2016,2(5):1500485. doi: 10.1002/aelm.201500485 [5] CHI Q G, ZHANG X L, WANG X B, et al. High thermal conductivity of epoxy-based composites utilizing 3D porous boron nitride framework[J]. Composites Communications,2022,33:101195. [6] 吴加雪, 唐超, 张天栋, 等. 氮化硼和氧化锌晶须共掺杂环氧树脂复合材料的导热与电性能[J]. 复合材料学报, 2022, 39(5):2157-2165.WU Jiaxue, TAO Chao, ZHANG Tiandong, et al. Thermal conductivity and electrical property of epoxy composites mixed with boron nitride and zinc oxide whisker[J]. Acta Materiae Compositae Sinica,2022,39(5):2157-2165(in Chinese). [7] WANG S, HE H, LI Q, et al. Improving thermal conductivity of ethylene-vinyl acetate composites by covalent bond-connected carbon nanotubes@ boron nitride hybrids[J]. Composites Communications,2022,29:100986. doi: 10.1016/j.coco.2021.100986 [8] CHEN C, XUE Y, LI Z, et al. Construction of 3D boron nitride nanosheets/silver networks in epoxy-based composites with high thermal conductivity via in-situ sintering of silver nanoparticles[J]. Chemical Engineering Journal,2019,369:1150-1160. doi: 10.1016/j.cej.2019.03.150 [9] KUANG Z, CHEN Y, LU Y, et al. Fabrication of highly oriented hexagonal boron nitride nanosheet/elastomer nanocomposites with high thermal conductivity[J]. Small,2015,11(14):1655-1659. doi: 10.1002/smll.201402569 [10] XU X, HU R, CHEN M, et al. 3D boron nitride foam filled epoxy composites with significantly enhanced thermal conductivity by a facial and scalable approach[J]. Chemical Engineering Journal,2020,397:125447. doi: 10.1016/j.cej.2020.125447 [11] LIU X, ZHOU H, WANG Z, et al. Construction of 3D interconnected and aligned boron nitride nanosheets structures in phthalonitrile composites with high thermal conductivity[J]. Composites Science and Technology,2022,220:109289. doi: 10.1016/j.compscitech.2022.109289 [12] DU G, LAI X, HU J, et al. Construction of high thermal conductive boron nitrid@chitosan aerogel/paraffin composite phase change materia[J]. Solar Energy Materials and Solar Cells,2022,240:111532. doi: 10.1016/j.solmat.2021.111532 [13] HE J, WANG H, GONG Y, et al. A novel three-dimensional boron phosphide network for thermal management of epoxy composites[J]. Composites Part B: Engineering,2022,233:109662. doi: 10.1016/j.compositesb.2022.109662 [14] LUO J, YANG X, TUSIIME R, et al. Synergistic effect of multiscale BNs/CNT and 3D melamine foam on the thermal conductive of epoxy resin[J]. Composites Communications,2022,29:101044. [15] LI S J, LI J C, JI P Z, et al. Bubble-templated construction of three-dimensional ceramic network for enhanced thermal conductivity of silicone rubber composites[J]. Chinese Journal of Polymer Science,2021,39(7):789-795. doi: 10.1007/s10118-021-2581-4 [16] WANG Y, GAO Y, TANG B, et al. Epoxy composite with high thermal conductivity by constructing 3D-oriented carbon fiber and BN network structure[J]. RSC Advances,2021,11(41):25422-25430. doi: 10.1039/D1RA04602K [17] YOON H, MATTEINI P, HWANG B. Review on three-dimensional ceramic filler networking composites for thermal conductive applications[J]. Journal of Non-Crystalline Solids,2022,576:121272. doi: 10.1016/j.jnoncrysol.2021.121272 [18] OUYANG Y, BAI L, TIAN H, et al. Recent progress of thermal conductive ploymer composites: Al2O3 fillers, properties and application s[J]. Composites Part A: Applied Science and Manufacturing,2022,152:106685. doi: 10.1016/j.compositesa.2021.106685 [19] LIANG D, REN P, REN F, et al. Synergetic enhancement of thermal conductivity by constructing BN and AlN hybrid network in epoxy matrix[J]. Journal of Polymer Research,2020,27(8):1-12. [20] LI J, LI F, ZHAO X, et al. Jelly-inspired construction of the three-dimensional interconnected BN network for lightweight, thermally conductive, and electrically insulating rubber composites[J]. ACS Applied Electronic Materials,2020,2(6):1661-1669. doi: 10.1021/acsaelm.0c00227 [21] HAN G, ZHANG D, KONG C, et al. Flexible, thermostable and flame-resistant epoxy-based thermally conductive layered films with aligned ionic liquid-wrapped boron nitride nanosheets via cyclic layer-by-layer blade-casting[J]. Chemical Engineering Journal,2022,437:135482. doi: 10.1016/j.cej.2022.135482 [22] TIAN R, JIA X, LAN M, et al. Efficient exfoliation and functionalization of hexagonal boron nitride using recyclable ionic liquid crystal for thermal management applications[J]. Chemical Engineering Journal,2022:137255. [23] LI Y, HUANG T, CHEN M, et al. Simultaneous exfoliation and functionalization of large-sized boron nitride nanosheets for enhanced thermal conductivity of polymer composite film[J]. Chemical Engineering Journal,2022,442:136237. doi: 10.1016/j.cej.2022.136237 [24] El-NAGGAR M E, ABDELAGWAD A M, TRIPATHI A, et al. Curdlan cryogels reinforced with cellulose nanofibrils for controlled release[J]. Journal of environmental chemical engineering,2017,5(6):5754-5761. doi: 10.1016/j.jece.2017.10.056 [25] QI Y, WANG J, KOU Y, et al. Synthesis of an aromatic N-heterocycle derived from biomass and its use as a polymer feedstock[J]. Nature Communications,2019,10(1):1-9. doi: 10.1038/s41467-018-07882-8 [26] WEI Z, XIE W, GE B, et al. Enhanced thermal conductivity of epoxy composites by constructing aluminum nitride honeycomb reinforcements[J]. Composites Science and Technology,2020,199:108304. doi: 10.1016/j.compscitech.2020.108304 [27] XIAO C, GUO Y, TANG Y, et al. Epoxy composite with significantly improved thermal conductivity by constructing a vertically aligned three-dimensional network of silicon carbide nanowires/boron nitride nanosheets[J]. Composites Part B: Engineering,2020,187:107855. doi: 10.1016/j.compositesb.2020.107855 [28] XIAO C, CHEN L, TANG Y, et al. Three dimensional porous alumina network for polymer composites with enhanced thermal conductivity[J]. Composites Part A: Applied Science and Manufacturing,2019,124:105511. doi: 10.1016/j.compositesa.2019.105511 [29] LI R, YANG X, LI J, et al. Review on polymer composites with high thermal conductivity and low dielectric properties for electronic packaging[J]. Materials Today Physics,2021,22:100594. [30] GU J, XU S, ZHUANG Q, et al. Hyperbranched polyborosilazane and boron nitride modified cyanate ester composite with low dielectric loss and desirable thermal conductivity[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2017,24(2):784-790. [31] HAN Y, SHI X, WANG S, et al. Nest-like hetero-structured BNNS@SiC NWs fillers and significant improvement on thermal conductivities of epoxy composites[J]. Composites Part B: Engineering,2021,210:108666. doi: 10.1016/j.compositesb.2021.108666 [32] SHI X, ZHANG R, RUAN K, et al. Improvement of thermal conductivities and simulation model for glass fabrics reinforced epoxy laminated composites via introducing hetero-structured BNN-30@BNNS fillers[J]. Journal of Materials Science & Technology,2021,82:239-249. -

计量
- 文章访问数: 395
- HTML全文浏览量: 216
- 被引次数: 0