留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CoSe2催化剂结构调控与含硫废水降解与光解水协同制氢性能

周杰联 冯永新1 李德波1 赵宁1 谢志文2

周杰联, 冯永新1, 李德波1, 等. CoSe2催化剂结构调控与含硫废水降解与光解水协同制氢性能[J]. 复合材料学报, 2022, 39(0): 1-11
引用本文: 周杰联, 冯永新1, 李德波1, 等. CoSe2催化剂结构调控与含硫废水降解与光解水协同制氢性能[J]. 复合材料学报, 2022, 39(0): 1-11
Jielian ZHOU, Yongxin FENG, Debo LI, Ning ZHAO, Zhiwen XIE. Structure regulation of CoSe2 and sulfur-containing wastewater degradation and photocatalytic water splitting with simultaneous contaminant degradation[J]. Acta Materiae Compositae Sinica.
Citation: Jielian ZHOU, Yongxin FENG, Debo LI, Ning ZHAO, Zhiwen XIE. Structure regulation of CoSe2 and sulfur-containing wastewater degradation and photocatalytic water splitting with simultaneous contaminant degradation[J]. Acta Materiae Compositae Sinica.

CoSe2催化剂结构调控与含硫废水降解与光解水协同制氢性能

基金项目: 高耗水企业废水资源化及零排放关键技术研究与集成应用(项目编号:GDKJXM20183546)
详细信息
    通讯作者:

    周杰联,硕士研究生,高级工程师,研究方向为废水处理 E-mail: 381646255@qq.com

  • 中图分类号: TB331

Structure regulation of CoSe2 and sulfur-containing wastewater degradation and photocatalytic water splitting with simultaneous contaminant degradation

  • 摘要: 光催化技术绿色环保,近年来在氢能开发、污染净化、医疗保健等领域具有一定的应用前景,有望成为解决环境和能源问题的有效途径。通过控制煅烧条件成功转变相结构,制备了两种不同晶相结构的硒化钴(CoSe2),即正交相硒化钴(o-CoSe2)与立方相硒化钴(c-CoSe2)。选择半导体CdS进行复合,发现两种助催化剂均对光催化降解及制氢有良好的促进作用。通过莫特肖特基曲线(MS)、固体紫外吸收光谱(DRS)、稳态荧光光谱(PL)和光电性能表征发现c-CoSe2比o-CoSe2具有更强的导电性及更高效的电荷传输能力,这理论上更利于光催化反应的进行。以乳酸为牺牲剂,10% o-CoSe2/CdS和c-CoSe2/CdS为最优负载量的制氢效率分别为9006.2 μmol·g−1·h−1和7151.2 μmol·g−1·h−1,较CdS单体而言分别提升了20倍和15倍,接近甚至超过了同条件下贵金属铂(Pt)负载的制氢活性。最优负载10% o-CoSe2/CdS在含硫废水亚甲基蓝(MB)降解及协同产氢测试中兼顾了降解和产氢性能。结合光催化反应步骤以及理论计算分析,发现o-CoSe2金属钴位点上有更合适的氢吸附自由能,是其具有最佳助催效果的关键原因。

     

  • 图  1  o-CoSe2和c-CoSe2的XRD图(a)和拉曼光谱图(b);CdS、10% o-CoSe2/CdS和10% c-CoSe2/CdS的XRD图(c)和氮气吸附-脱附曲线图(d)

    Figure  1.  XRD patterns(a) and Raman spectra (b) of o-CoSe2 and c-CoSe2; XRD patterns (c) and N2 adsorption-desorption curves (d) of CdS, 10% o-CoSe2/CdS and c-CoSe2/CdS

    图  3  o-CoSe2的SEM图(a)、TEM图(b)、HRTTEM图(c);c-CoSe2的SEM图(d)、TEM图(e)、HRTTEM图(f);CdS、10% o-CoSe2/CdS、10% c-CoSe2/CdS的SEM图(g-i)

    Figure  3.  SEM image (a), TEM image (b), HRTEM image (c) of o-CoSe2; SEM image(d), TEM image(e), HRTEM image (f) of c-CoSe2; SEM images of CdS, 10% o-CoSe2/CdS (h) and 10% c-CoSe2/CdS (i).

    图  2  o-CoSe2和c-CoSe2中Co 2p (a)和Se 3d (b)的高分辨XPS谱图;o-CoSe2/CdS和c-CoSe2/CdS中Cd 3d (c)和S 2p (d)的高分辨XPS谱图

    Figure  2.  Co 2p (a) and Se 3d (b) XPS spectra of o-CoSe2 and c-CoSe2; Cd 3d (c) and S 2p (d) XPS spectra of o-CoSe2/CdS and c-CoSe2/CdS

    图  5  (a) CdS、10% o-CoSe2/CdS和10% c-CoSe2/CdS样品的瞬时光电流图谱;(b) 10% o-CoSe2/CdS和10% c-CoSe2/CdS样品的电化学阻抗谱;(c)不同样品的莫特肖特基曲线

    Figure  5.  (a) Transient photocurrent curves of CdS, 10% o-CoSe2/CdS and 10% c-CoSe2/CdS; (b) Electrochemical impedance spectroscopy of 10% o-CoSe2/CdS and 10% c-CoSe2/CdS; (c) MS curve of different samples.

    Z'—Resistance; Z''—Reactance; 1/C2—Reciprocal of the capacitance squared

    图  4  CdS、o-CoSe2/CdS、c-CoSe2/CdS (a)和o-CoSe2、c-CoSe2(b) 的DRS光谱;(c) CdS的带隙评估图;(d) o-CoSe2/CdS和c-CoSe2/CdS的PL光谱(激发波长为370 nm)

    Figure  4.  UV-vis diffuse reflectance spectra of CdS, o-CoSe2/CdS, c-CoSe2/CdS (a) and o-CoSe2, c-CoSe2 (b); (c) Estimated bandgap of CdS; (d) PL spectra excited at 370 nm of o-CoSe2/CdS, c-CoSe2/CdS

    图  6  (a) CdS、5%、10%和15% o-CoSe2/CdS样品的光催化制氢性能比较;(b) 10% o-CoSe2/CdS样品的制氢稳定性试验;(c) CdS、5%、10%和15% c-CoSe2/CdS样品的光催化制氢性能比较;(d) 10% c-CoSe2/CdS样品的制氢稳定性试验;(e) 在不同波长下10% c-CoSe2/CdS和10% o-CoSe2/CdS样品的量子效率图(10%乳酸作为牺牲剂,50 mg催化剂,带UV滤光片氙灯作为光源,420~850 nm)

    Figure  6.  (a) Photocatalytic HER performance of CdS, 5%, 10% and 15% o-CoSe2/CdS; (b) Stability test of 10% o-CoSe2/CdS; (c) Photocatalytic HER performance of CdS, 5%, 10% and 15% c-CoSe2/ CdS; (d) Stability test of 10% c-CoSe2/CdS; (e) AQY (apparent quantum yield) of 10% c-CoSe2/CdS and 10% o-CoSe2/CdS under different wavelength (10% C3H6O3 as sacrificial agent, 50 mg catalyst usage, a xenon lamp as a light source, 420-850 nm.

    图  7  (a) CdS、10% o-CoSe2/CdS、10% c-CoSe2/CdS和1% Pt/CdS样品的光催化制氢性能比较;(b) 10% o-CoSe2/CdS降解MB协同产氢量图; (c) CdS、10% o-CoSe2/CdS和10% c-CoSe2/CdS降解MB性能图;(d) 10% o-CoSe2/CdS降解不同浓度的MB 4小时协同产氢量图;10% c-CoSe2/CdS (e)和10% o-CoSe2/CdS (f)循环后的XRD图

    Figure  7.  (a) Photocatalytic HER performance of CdS, 10% o-CoSe2/ CdS, 10% c-CoSe2/CdS and 1% Pt/CdS; (b) Photocatalytic degradation simultaneous with HER of 10% o-CoSe2/CdS; (c) Photodegradation of MB of CdS, 10% o-CoSe2/ CdS, 10% c-CoSe2/CdS; (d) Effect of concentration of for the photocatalytic degradation simultaneous with HER system of 10% o-CoSe2/CdS after 4 h; XRD patterns of 10% c-CoSe2/CdS (e) and 10% o-CoSe2/CdS (f) before and after the cycle.

    C—Concentration; C0—Initial concentration

    图  8  o-CoSe2/CdS和c-CoSe2/CdS光催化反应中电子迁移途径图

    Figure  8.  Diagrams of electron migration pathways in photocatalytic reactions of o-CoSe2/CdS and c-CoSe2/CdS system

  • [1] SHARMA S, BASU S. . Fabrication of centimeter-sized Sb2S3/SiO2 monolithic mimosa pudica nanoflowers for remediation of hazardous pollutants from industrial wastewater, Journal of Cleaner Production, 280 (2021) 124525.
    [2] LIAO C, ERBAUGH J, KELLY A, et al. Clean energy transitions and human well-being outcomes in Lower and Middle Income Countries: A systematic review[J]. Renewable and Sustainable Energy Reviews,2021,145:111063. doi: 10.1016/j.rser.2021.111063
    [3] QYYUM M, DICKSON R, ALI S, et al. Availability, versatility, and viability of feedstocks for hydrogen production: Product space perspective[J]. Renewable and Sustainable Energy Reviews,2021:110843.
    [4] HANLEY E, DEANE J, GALLACHÓIR B. The role of hydrogen in low carbon energy futures-A review of existing perspectives[J]. Renewable and Sustainable Energy Reviews,2018,82:3027-3045. doi: 10.1016/j.rser.2017.10.034
    [5] SHANER M, ATWATER H, LEWIS N, et al. A comparative technoeconomic analysis of renewable hydrogen production using solar energy[J]. Energy & Environmental Science,2016,9(7):2354-2371.
    [6] WANG Y, LIU X, WANG X, et al. Metal-Organic Frameworks Based Photocatalysts: Architecture Strategies for Efficient Solar Energy Conversion[J]. Chemical Engineering Journal,2021:129459.
    [7] KOSCO J, MORUZZI F, WILLNER B, et al. Photocatalysts Based on Organic Semiconductors with Tunable Energy Levels for Solar Fuel Applications[J]. Advanced Energy Materials,2020,10(39):2001935. doi: 10.1002/aenm.202001935
    [8] LI Y, GAO C, JIANG W, et al. A game-changing design of low-cost, large-size porous cocatalysts decorated by ultra-small photocatalysts for highly efficient hydrogen evolution[J]. Applied Catalysis B:Environmental,2021,286:119923. doi: 10.1016/j.apcatb.2021.119923
    [9] LOW J, YU J, JARONIEC M, et al. Heterojunction Photocatalysts[J]. Advanced Materials,2017,29(20):1601694. doi: 10.1002/adma.201601694
    [10] 吴欢文, 张宁, 钟金莲, 等. p-n复合半导体光催化剂研究进展[J]. 化工进展, 2007(12):1669-1674. doi: 10.3321/j.issn:1000-6613.2007.12.001

    WU Huanwen, ZHANG Ning, ZHONG Jinlian, et al. Progress in research of p-n type semiconductor composite photocatalysts[J]. Chemical Industry and Engineering Progress,2007(12):1669-1674(in Chinese). doi: 10.3321/j.issn:1000-6613.2007.12.001
    [11] BHETHANABOTLA V, RUSSELL D, KUHN J. Assessment of mechanisms for enhanced performance of Yb/Er/titania photocatalysts for organic degradation: Role of rare earth elements in the titania phase[J]. Applied Catalysis B:Environmental,2017,202:156-164. doi: 10.1016/j.apcatb.2016.09.008
    [12] WANG W, TADÉ M, SHAO Z. Nitrogen-doped simple and complex oxides for photocatalysis: A review[J]. Progress in Materials Science,2018,92:33-63. doi: 10.1016/j.pmatsci.2017.09.002
    [13] 吴晶, 曾昆伟, 周文芳, 等. 敏化剂敏化改性TiO2的研究进展[J]. 材料导报, 2009, 23(17):107-109. doi: 10.3321/j.issn:1005-023X.2009.17.023

    WU Jing, ZENG Kunwei, ZHOU Wenfang, et al. Research Progress in Sensitizer-sensitized Modification of Titanium Dioxide[J]. Materials Reports,2009,23(17):107-109(in Chinese). doi: 10.3321/j.issn:1005-023X.2009.17.023
    [14] 邱炜, 陈爱平, 刘威, 等. 二氧化钛光催化剂的光敏化研究进展[J]. 现代化工, 2004(S1):43-46.

    QIU Wei, CHEN Aiping, LIU Wei, et al. Advances in photosensitization of titania semiconductor photocatalysts[J]. Modern Chemical Industry,2004(S1):43-46(in Chinese).
    [15] XIAO N, LI S, LI X, et al. The roles and mechanism of cocatalysts in photocatalytic water splitting to produce hydrogen[J]. Chinese Journal of Catalysis,2020,41(4):642-671. doi: 10.1016/S1872-2067(19)63469-8
    [16] 司沿洁. g-C3N4基复合光催化剂的制备及其光催化性能的研究[D]. 武汉: 中国地质大学, 2018.

    SI Y. Synthesis of based hybrid photocatalysts with enhanced photocatalytic activity[D]. Wuhan: China University of Geosciences, 2018 (in Chinese).
    [17] LI H, CHEN S, JIA X, et al. Amorphous nickel-cobalt complexes hybridized with 1T-phase molybdenum disulfide via hydrazine-induced phase transformation for water splitting[J]. Nature Communications,2017,8(1):15377. doi: 10.1038/ncomms15377
    [18] 陈鹏作. 表界面化学调控低维钴基材料电催化活性[D]. 合肥: 中国科学技术大学, 2018.

    CHEN Pengzuo. Surface and interface chemistry regulates the electrocatalytic activity of low-dimensional cobalt-based materials[D]. Hefei: University of Science and Technology of China, 2018 (in Chinese).
    [19] LIU Y, CHENG H, LYU M, et al. Low Overpotential in Vacancy-Rich Ultrathin CoSe2 Nanosheets for Water Oxidation[J]. Journal of the American Chemical Society,2014,136(44):15670-15675. doi: 10.1021/ja5085157
    [20] ZHANG T, YU J, GUO H, et al. Heterogeneous CoSe2-CoO nanoparticles immobilized into N-doped carbon fibers for efficient overall water splitting[J]. Electrochimica Acta,2020,356:136822. doi: 10.1016/j.electacta.2020.136822
    [21] 王蒙, 马建泰, 吕功煊. 光催化全分解水制氢中助催化剂表面氢氧复合反应的抑制[J]. 分子催化, 2019, 33(5):461-485.

    WANG Meng, MA Jiantai, LV Gongxuan. The inhibition of hydrogen and oxygen recombination reverse reaction on cocatalyst surface in photocatalytic overall water splitting for hydrogen evolution[J]. Journal of Molecular Catalysis (China),2019,33(5):461-485(in Chinese).
    [22] CHEN S, HUANG D, XU P, et al. Semiconductor-based photocatalysts for photocatalytic and photoelectrochemical water splitting: will we stop with photocorrosion?[J]. Journal of Materials Chemistry A,2020,8(5):2286-2322. doi: 10.1039/C9TA12799B
    [23] YI J, ZHU X, ZHOU M, et al. Crystal phase dependent solar driven hydrogen evolution catalysis over cobalt diselenide[J]. Chemical Engineering Journal,2020,396:125244. doi: 10.1016/j.cej.2020.125244
    [24] GE F, HUANG S, YAN J, et al. Sulfur promoted n-π* electron transitions in thiophene-doped g-C3N4 for enhanced photocatalytic activity, Chinese Journal of Catalysis, 42 (2021) 450-459.
  • 加载中
计量
  • 文章访问数:  176
  • HTML全文浏览量:  64
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-13
  • 录用日期:  2021-12-25
  • 修回日期:  2021-12-16
  • 网络出版日期:  2022-01-14

目录

    /

    返回文章
    返回