留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

平纹编织结构CFRP正交切削切屑形成及表面损伤

周强 陈燕 王晓宇 张川川 陈雪梅 刘元吉 陈清良 勾江洋

周强, 陈燕, 王晓宇, 等. 平纹编织结构CFRP正交切削切屑形成及表面损伤[J]. 复合材料学报, 2023, 40(9): 5371-5385. doi: 10.13801/j.cnki.fhclxb.20221214.001
引用本文: 周强, 陈燕, 王晓宇, 等. 平纹编织结构CFRP正交切削切屑形成及表面损伤[J]. 复合材料学报, 2023, 40(9): 5371-5385. doi: 10.13801/j.cnki.fhclxb.20221214.001
ZHOU Qiang, CHEN Yan, WANG Xiaoyu, et al. Chip formation and surface damage in orthogonal cutting of plain-woven CFRP[J]. Acta Materiae Compositae Sinica, 2023, 40(9): 5371-5385. doi: 10.13801/j.cnki.fhclxb.20221214.001
Citation: ZHOU Qiang, CHEN Yan, WANG Xiaoyu, et al. Chip formation and surface damage in orthogonal cutting of plain-woven CFRP[J]. Acta Materiae Compositae Sinica, 2023, 40(9): 5371-5385. doi: 10.13801/j.cnki.fhclxb.20221214.001

平纹编织结构CFRP正交切削切屑形成及表面损伤

doi: 10.13801/j.cnki.fhclxb.20221214.001
基金项目: 国家自然科学基金(51875284)
详细信息
    通讯作者:

    陈燕,博士,教授,博士生导师,研究方向为难加工材料的高效精密加工技术 E-mail: ninaych@nuaa.edu.cn

  • 中图分类号: TB332;V257

Chip formation and surface damage in orthogonal cutting of plain-woven CFRP

Funds: National Natural Science Foundation of China (51875284)
  • 摘要: 平纹编织结构碳纤维增强树脂基复合材料(Plain-woven carbon fiber-reinforced plastic,PW-CFRP)展现出高损伤容限特性,在航空航天领域应用广泛,但PW-CFRP是一种多尺度复合材料,传统的微、宏观尺度并不能较好地去研究其切削机制,因此本文采用介观层面切削仿真手段对其切屑形成机制进行研究。本文根据PW-CFRP的几何结构特点建立介观尺度的三维正交切削仿真模型,同时开展正交切削试验,对仿真模型进行验证;研究了不同纤维编织方向PW-CFRP在切削加工中的材料去除机制。研究结果表明:在相同工艺参数条件下,切削力和表面损伤的仿真与实验结果最大相对误差不超过15%,仿真模型的可靠性得以验证;其中各纤维方向纤维束区域的最大损伤深度依次为0°<45°<90°<135°;经纬编织的平纹编织结构对切削加工损伤起到一定的抑制作用,相邻纤维束间的支撑约束作用阻碍了损伤扩展,其最大加工损伤深度不会超出纤维束截面最大宽度;纤维附近树脂层厚度是加工损伤形成的重要因素,树脂富集区域对纤维的支撑作用较好,可以有效抑制损伤,树脂薄弱区域对纤维支撑较弱,损伤容易扩展至此处,使材料表面损伤呈弧形分布。

     

  • 图  1  平纹编织结构碳纤维增强树脂基复合材料(PW-CFRP)截面实物图与结构示意图

    Figure  1.  Physical and structural diagram of plain-woven carbon fiber-reinforced plastic (PW-CFRP)

    A0—Fiber bundle width; H0—Maximum thickness of fiber bundle interface; h0—Thickness of resin-starved area; hm—Thickness of resin-rich area; φ—Fibre fluctuation angle

    图  2  PW-CFRP三维几何模型

    Figure  2.  Three-dimensional geometric model of PW-CFRP

    图  3  PW-CFRP正交切削仿真模型及纤维束材料主方向

    Figure  3.  Orthogonal cutting simulation model of PW-CFRP and main material direction of fiber bundle

    图  4  树脂基体材料本构

    Figure  4.  Constitutive model of matrix material

    σ0—Resin yield stress; σy0—Resin yield strength; E0—Initial elastic modulus of resin; Ed—Elastic modulus of resin after degradation; dm—Damage state variable; σ—Equivalent plastic stress; ε—Equivalent plastic strain; $\overline \sigma $—Mean yield stress; E—Modulus of elasticity; ${\overline \varepsilon _0} $—Initial plastic strain; ${\overline \varepsilon _{\rm{f}}} $—Maximum plastic strain

    图  5  Cohesive黏性表面本构

    Figure  5.  Constitutive model of Cohesive surface

    K—Interface separation stiffness; δ0—Equivalent displacement at damage initiation; δf—Equivalent displacement when completely damaged; Gc—Interfacial fracture energy

    图  6  界面层的壳单元模型

    Figure  6.  Shell element model of interface layer

    图  7  PW-CFRP正交切削试验平台及刀具示意图

    Figure  7.  Orthogonal cutting experiment platform of PW-CFRP and tool diagram

    γ—Tool rake angle; α—Tool back angle

    图  8  PW-CFRP切削力仿真与试验结果对比(切削速度v=2000 mm·min−1、切削深度ap=0.1 mm)

    Figure  8.  Comparison of simulation force and experiment force results of PW-CFRP (v=2000 mm·min−1, ap=0.1 mm)

    图  9  PW-CFRP织物层最大损伤深度的仿真与试验结果(v=2000 mm·min−1ap=0.1 mm)

    Figure  9.  PW-CFRP fabric layer simulation and experiment results of maximum damage depth (v=2000 mm·min−1, ap=0.1 mm

    Dmax—Maximum damage depth; SDV3—Resin tensile failure damage output variable

    图  10  PW-CFRP (0°/90°)织物层纤维束的切屑形成过程

    Figure  10.  Chip formation process of PW-CFRP (0°/90°) fabric layer

    图  11  PW-CFRP (45°/135°)织物层纤维束的切屑形成过程

    Figure  11.  Chip formation process of PW-CFRP (45°/135°) fabric layer

    图  12  PW-CFRP中树脂厚度分布示意图

    Figure  12.  Matrix thickness distribution in PW-CFRP

    图  13  表面PW-CFRP织物在切削载荷下的受力情形示意图

    Figure  13.  Force analysis of surface PW-CFRP fabric under cutting load

    图  14  PW-CFRP (0°/90°)织物层材料表面损伤形成机制

    Figure  14.  PW-CFRP (0°/90°) fabric layer material removal mechanism

    图  15  PW-CFRP (45°/135°)织物层材料表面损伤形成机制

    Figure  15.  PW-CFRP (45°/135°) fabric layer material removal mechanism

    表  1  仿真模型几何尺寸参数

    Table  1.   Geometric dimension parameters of simulation model

    A0/mmH0/mmVfh0/mm
    1.80.1555%0.05
    下载: 导出CSV

    表  2  T700碳纤维织物材料各组分性能参数[27-30]

    Table  2.   Property parameters of each component of T700 carbon fiber fabric[27-30]

    Phase compositionMaterial parameterValue
    Fiber bundleX1t f/MPa4900
    X1c f/MPa4500
    X2t f/MPa400
    X2c f/MPa700
    X3t f/MPa400
    X3c f/MPa700
    S12 f/MPa100
    S13 f/MPa100
    S23 f/MPa58
    Matrixρm/(kg·m−3)980
    Em/MPa4000
    νm0.4
    σy0 m /MPa270
    Interface propertiesNmax/MPa60
    Smax/MPa90
    Tmax/MPa90
    $ {G}_{\mathrm{n}}^{\mathrm{c}} $/(N·m−1)0.2
    $ {G}_{\mathrm{s}}^{\mathrm{c}} $/(N·m−1)1.0
    $ {G}_{\mathrm{t}}^{\mathrm{c}} $/(N·m−1)1.0
    Notes:X1t f—Tensile strength of fiber bundles in 1 direction; X2t f—Tensile strength of fiber bundles in 2 direction; X3t f—Tensile strength of fiber bundles in 3 direction; X1c f—Compressive strength of fiber bundles in the 1 direction; X2c f—Compressive strength of fiber bundles in 2 direction; X3c f—Compressive strength of fiber bundles in 3 direction; S12 f—Shear strength of fiber bundles in 1-2 plane; S23 f—Shear strength of fiber bundles in 2-3 plane; S13 f—Shear strength of fiber bundles in 1-3 plane. ρm—Matrix density; Em—Young's modulus of matrix; νm—Poisson's ratio of matrix; σy0 m—Yield strength of the matrix; Nmax—Normal stress intensity of interface; Smax—First tangential stress intensity of interface; Tmax—Second tangential stress intensity of interface; $ {G}_{\mathrm{n}}^{\mathrm{c}} $—Normal critical fracture energy of interface; $ {G}_{\mathrm{s}}^{\mathrm{c}} $—First tangential critical fracture energy of interface; $ {G}_{\mathrm{t}}^{\mathrm{c}} $—Second tangential critical fracture energy of interface.
    下载: 导出CSV

    表  3  正交切削试验参数

    Table  3.   Process parameters of orthogonal cutting experiment

    v/(mm·min−1)ap/mmγ/(°)α/(°)
    2 0000.11512
    Notes: v—Cutting speed; ap—Cutting depth.
    下载: 导出CSV
  • [1] 陈燕, 葛恩德, 傅玉灿, 等. 碳纤维增强树脂基复合材料制孔技术研究现状与展望[J]. 复合材料学报, 2015, 32(2):301-316. doi: 10.13801/j.cnki.fhclxb.20150211.002

    CHEN Yan, GE Ende, FU Yucan, et al. Review and prospect of drilling technologies for carbon fiber reinforced polymer[J]. Acta Materiae Compositae Sinica,2015,32(2):301-316(in Chinese). doi: 10.13801/j.cnki.fhclxb.20150211.002
    [2] 林刚. 碳纤维产业“聚”变发展:2020全球碳纤维复合材料市场报告[J]. 纺织科学研究, 2021, 32(5):27-49.

    LIN Gang. The development of carbon fiber industry-2020 global carbon fiber composite market report[J]. Textile Science Research,2021,32(5):27-49(in Chinese).
    [3] FEITO N, DIAZ-ÁLVAREZ A, CANTERO J L, et al. Experimental analysis of special tool geometries when drilling woven and multidirectional CFRPs[J]. Journal of Reinforced Plastics and Composites,2016,35(1):33-55. doi: 10.1177/0731684415612931
    [4] GAO Z Y, CHEN L. A review of multi-scale numerical modeling of three-dimensional woven fabric[J]. Composite Structures,2021,263:113685. doi: 10.1016/j.compstruct.2021.113685
    [5] ONAL L, ADANUR S. Modeling of elastic, thermal, and strength/failure analysis of two-dimensional woven composites—A review[J]. Applied Mechanics Reviews,2007,60(1):37-49. doi: 10.1115/1.2375143
    [6] 杨晓文. 基于编织角动态变化的2D编织CFRP力学性能仿真研究[D]. 长春: 吉林大学, 2022.

    YANG Xiaowen. Simulation research on mechanical properties of 2D braided CFRP based on dynamic change of braiding angle[D]. Changchun: Jilin University, 2022(in Chinese).
    [7] ZHAO Q L, WANG W H, LIU Y T, et al. Multiscale modeling framework to predict the low-velocity impact and compression after impact behaviors of plain woven CFRP composites[J]. Composite Structures,2022,299:116090. doi: 10.1016/j.compstruct.2022.116090
    [8] ZHANG X J, SHI Y C, LI Z X. Experimental study on the tensile behavior of unidirectional and plain weave CFRP laminates under different strain rates[J]. Composites Part B: Engineering,2019,164:524-536. doi: 10.1016/j.compositesb.2019.01.067
    [9] 张铁纯, 杨晨晨, 王轩, 等. 平纹编织复合材料层合板静态压缩与压-压疲劳性能[J]. 航空材料学报, 2022, 42(2):64-72. doi: 10.11868/j.issn.1005-5053.2021.000106

    ZHANG Tiechun, YANG Chenchen, WANG Xuan, et al. Static compression and compression-compression fatigue properties of plain woven composite laminates[J]. Journal of Aeronautical Materials,2022,42(2):64-72(in Chinese). doi: 10.11868/j.issn.1005-5053.2021.000106
    [10] SIDDIQUE A, SUN B Z, GU B H. Structural influences of two-dimensional and three-dimensional carbon/epoxy composites on mode I fracture toughness behaviors with rate effects on damage evolution[J]. Journal of Industrial Textiles,2020,50(1):23-45. doi: 10.1177/1528083718819871
    [11] KING M J, JEARANAISILAWONG P, SOCRATE S. A continuum constitutive model for the mechanical behavior of woven fabrics[J]. International Journal of Solids and Structures,2005,42(13):3867-3896. doi: 10.1016/j.ijsolstr.2004.10.030
    [12] RATTAN R, BIJWE J, FAHIM M. Influence of weave of carbon fabric on low amplitude oscillating wear performance of polyetherimide composites[J]. Wear,2007,262(5-6):727-735. doi: 10.1016/j.wear.2006.08.005
    [13] NAIK N K, REDDY K S, MEDURI S, et al. Interlaminar fracture characterization for plain weave fabric composites[J]. Journal of Materials Science,2002,37(14):2983-2987. doi: 10.1023/A:1016025232102
    [14] 王冬峣, 赫晓东, 刘文博, 等. 二维编织复合材料在正交切削中的切削力和加工表面质量研究[J]. 玻璃钢/复合材料, 2017(12):77-82. doi: 10.3969/j.issn.1003-0999.2017.12.014

    WANG Dongyao, HE Xiaodong, LIU Wenbo, et al. Study on machining forces and machined surface quality of plane woven-fabric CFRP in orthogonal cutting experiment[J]. Fiber Reinforced Plastics/Composites,2017(12):77-82(in Chinese). doi: 10.3969/j.issn.1003-0999.2017.12.014
    [15] LIU S N, WU D, ZHAO J, et al. The material removal mechanism in orthogonal cutting of woven AFRP[J]. Journal of Materials Science,2022,57(34):16301-16316. doi: 10.1007/s10853-022-07422-2
    [16] SU F, YUAN J T, SUN F J, et al. Modeling and simulation of milling forces in milling plain woven carbon fiber-reinforced plastics[J]. The International Journal of Advanced Manufacturing Technology,2018,95(9):4141-4152.
    [17] ZHANG D Z, WANG H, BURKS A R, et al. Delamination in rotary ultrasonic machining of CFRP composites: Finite element analysis and experimental implementation[J]. The International Journal of Advanced Manufacturing Technology,2020,107(9-10):3847-3858. doi: 10.1007/s00170-020-05310-0
    [18] WONG I M M, TAN C L, AZMI A I, et al. Evaluations of mechanical properties and residual strength of drilled glass fiber reinforced polymer (GFRP) composites[J]. Applied Mechanics and Materials,2014,660:270-274.
    [19] 周井文, 黄久超, 杨叶, 等. 单向铺层与织物结构CFRP端铣加工表面质量对比分析[J]. 工具技术, 2021, 55(8):49-52. doi: 10.3969/j.issn.1000-7008.2021.08.007

    ZHOU Jingwen, HUANG Jiuchao, YANG Ye, et al. Analysis of surface integrity during end milling of unidirectional lamination and woven fabric structure CFRP[J]. Tool Engineering,2021,55(8):49-52(in Chinese). doi: 10.3969/j.issn.1000-7008.2021.08.007
    [20] HINTZE W, CORDES M, KOERKEL G. Influence of weave structure on delamination when milling CFRP[J]. Journal of Materials Processing Technology,2015,216:199-205. doi: 10.1016/j.jmatprotec.2014.09.004
    [21] MARIATTI M, NASIR M, ISMAIL H. Effect of sample cutting direction on mechanical properties of woven thermoplastic prepreg[J]. Polymer Testing,2000,19(6):617-624. doi: 10.1016/S0142-9418(99)00032-X
    [22] LI H N, WANG J P, WU C Q, et al. Damage behaviors of unidirectional CFRP in orthogonal cutting: A comparison between single-and multiple-pass strategies[J]. Composites Part B: Engineering,2020,185:107774. doi: 10.1016/j.compositesb.2020.107774
    [23] 李树健, 周永超, 陈蓉, 等. 考虑孔隙缺陷的CFRP微观切削仿真与实验研究[J]. 复合材料学报, 2023, 40(1): 625-636.

    LI Shujian, ZHOU Yongchao, CHEN Rong, et al. Simulation and experimental study of CFRP micro cutting considering voids defects[J]. Acta Materiae Compositae Sinica, 2023, 40(1): 625-636(in Chinese).
    [24] 苏飞. 碳纤维增强复合材料切削加工技术及其应用研究[D]. 南京: 南京理工大学, 2015.

    SU Fei. The cutting process technology and its application of carbon fiber-reinforced plastic[D]. Nanjing: Nanjing University of Science and Technology, 2015(in Chinese).
    [25] 邵兵. 大丝束碳纤维平纹编织复合材料孔边应力细观分析[D]. 南昌: 南昌大学, 2018.

    SHAO Bing. The mesomechanical analysis of stresses near central hole in big carbon tow plain-woven composite[D]. Nanchang: Nanchang University, 2018(in Chinese).
    [26] 周井文, 陈燕, 傅玉灿, 等. 纤维切削角对CFRP加工缺陷的影响规律[J]. 哈尔滨工业大学学报, 2015, 47(7):110-116. doi: 10.11918/j.issn.0367-6234.2015.07.018

    ZHOU Jingwen, CHEN Yan, FU Yucan, et al. Influence of fiber cutting angle on the machining defects during slotting of CFRP[J]. Journal of Harbin Institute of Technology,2015,47(7):110-116(in Chinese). doi: 10.11918/j.issn.0367-6234.2015.07.018
    [27] 张勋, 陈燕, 徐九华, 等. 大厚径碳纤维复合材料三维钻削有限元仿真及试验研究[J]. 金刚石与磨料磨具工程, 2020, 40(2):53-60. doi: 10.13394/j.cnki.jgszz.2020.2.0010

    ZHANG Xun, CHEN Yan, XU Jiuhua, et al. Finite element simulation of and experimental study on three-dimensional drilling of large diameter carbon fiber composites[J]. Diamond & Abrasives Engineering,2020,40(2):53-60(in Chinese). doi: 10.13394/j.cnki.jgszz.2020.2.0010
    [28] SANTIUSTE C, SOLDANI X, MIGUÉLEZ M H. Machining FEM model of long fiber composites for aeronautical components[J]. Composite Structures,2010,92(3):691-698. doi: 10.1016/j.compstruct.2009.09.021
    [29] 齐振超, 刘书暖, 程晖, 等. 基于三维多相有限元的CFRP细观切削机制研究[J]. 机械工程学报, 2016, 52(15):170-176. doi: 10.3901/JME.2016.15.170

    QI Zhenchao, LIU Shunuan, CHENG Hui, et al. Research on the mesoscopic cutting mechanism of CFRP based on three-dimensional multiphase finite element models[J]. Journal of Mechanical Engineering,2016,52(15):170-176(in Chinese). doi: 10.3901/JME.2016.15.170
    [30] LIU Y, LI Q N, QI Z C, et al. Scale-span modelling of dynamic progressive failure in drilling CFRPs using a tapered drill-reamer[J]. Composite Structures,2021,278:114710. doi: 10.1016/j.compstruct.2021.114710
    [31] 杨光猛, 万小朋, 侯赤. 纤维束波动效应对平纹编织复合材料损伤行为的影响[J]. 复合材料学报, 2020, 37(1):132-139. doi: 10.13801/j.cnki.fhclxb.20190324.002

    YANG Guangmeng, WAN Xiaopeng, HOU Chi. Damage behavior of plain woven composites considering undulation effect of fiber bundles[J]. Acta Materiae Compositae Sinica,2020,37(1):132-139(in Chinese). doi: 10.13801/j.cnki.fhclxb.20190324.002
    [32] BEDNARCYK B A, STIER B, SIMON J W, et al. Meso- and micro-scale modeling of damage in plain weave composites[J]. Composite Structures,2015,121:258-270. doi: 10.1016/j.compstruct.2014.11.013
  • 加载中
图(15) / 表(3)
计量
  • 文章访问数:  830
  • HTML全文浏览量:  451
  • PDF下载量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-11
  • 修回日期:  2022-11-18
  • 录用日期:  2022-12-02
  • 网络出版日期:  2022-12-16
  • 刊出日期:  2023-09-15

目录

    /

    返回文章
    返回