Chip formation and surface damage in orthogonal cutting of plain-woven CFRP
-
摘要:
平纹编织碳纤维增强树脂基复合材料(Plain-Woven Carbon Fiber-Reinforced Plastic,简称PW-CFRP)由于纤维间相互交错的几何结构,展现出高损伤容限特性,在航空航天领域应用广泛。国内外学者主要是开展了材料的力学性能试验或仿真研究,且仿真多聚焦在微观仿真层面,在切削加工方面研究更偏向于单向CFRP,同时PW-CFRP是一种多尺度复合材料,传统的微、宏观尺度并不能较好的去研究其切削机理。本文进一步完善了碳纤维复合材料切削加工的理论内容,为扩大PW-CFRP的应用范围提供理论支撑。本文根据PW-CFRP的几何结构特点建立了包含树脂基体相-界面相-纤维增强相的三维几何模型,并采用3D Hashin失效准则和PUCK基体失效准则,利用Fortran语言编写等效均质纤维束力学本构模型,建立介观尺度三维正交切削仿真模型。模拟了PW-CFRP的切屑形成过程,同时开展正交切削试验,对仿真模型进行验证;通过仿真分析结合实验阐明了在PW-CFRP中,纤维切削角对材料去除机理的影响以及经纬纤维束之间的相互钳制作用。其中不同纤维方向的纤维束区域最大损伤深度依次为0°<45°<90°<135°;经纬编织结构对切削加工损伤起到一定的抑制作用,相邻纤维束间的支撑约束作用阻碍了损伤扩展,其最大加工损伤深度不会超出纤维束截面最大宽度。同时,表面纤维附近树脂层厚度是加工表面损伤形成的重要因素,树脂富集区域对纤维的支撑作用较好,可以有效抑制损伤,树脂薄弱区域对纤维支撑较弱,损伤容易扩展至此处,使得材料表面损伤呈弧形分布。 (0°/90°)铺层织物正交切削切屑形成过程 纤维束受力情形与表面损伤形成 -
关键词:
- 平纹编织结构CFRP /
- ABAQUS /
- 正交切削 /
- 纤维方向 /
- 材料去除机理
Abstract: Plain-woven carbon fiber-reinforced plastic ( PW-CFRP ) shows high damage tolerance characteristics and is widely used in the aerospace field. However, PW-CFRP is a multi-scale composite material, and the traditional micro and macro scales cannot study its cutting mechanism well. Therefore, this paper uses mesoscopic cutting simulation methods to study its chip formation mechanism. In this paper, a mesoscopic three-dimensional orthogonal cutting simulation model was established according to the geometric structure characteristics of PW-CFRP, and the orthogonal cutting experiment was carried out to verify the simulation model. The material removal mechanism of PW-CFRP with different fiber braiding directions in cutting process was studied. The results show that the maximum relative error between the simulation and experimental results of cutting force and surface damage is less than 15 % under the same process parameters, and the reliability of the simulation model is verified. The maximum damage depth of fiber bundles in each fiber orientation is 0° < 45° < 90° < 135°. The plain-woven structure of warp and fill weaving has inhibitory effect on the machining damage. The support constraint between adjacent fiber bundles hinders the damage expansion, and its maximum processing damage depth will not exceed the maximum width of the fiber bundle section. The thickness of the matrix layer near the fiber is an important factor in the formation of processing damage. The resin-rich area has a good supporting effect on the fiber and can effectively suppress the damage. The resin-starved area has weak support for the fiber, and the damage is easy to expand here, making the surface damage of the material arc-shaped distribution.-
Key words:
- plain woven CFRP /
- ABAQUS /
- orthogonal cutting /
- fiber orientation /
- material removal mechanism
-
表 1 仿真模型几何尺寸参数
Table 1. Geometric dimension parameters of simulation model
A0/mm H0/mm Vf h0/mm 1.8 0.15 55% 0.05 Notes:A0 is fiber bundle width; H0 the maximum thickness of fiber bundle interface; Vf is fiber volume fraction; h0 is the thickness of resin-starved area. Phase composition Material parameter Value Fiber bundle X1 tf/MPa 4900 X1 cf/MPa 4500 X2 tf/MPa 400 X2 cf/MPa 700 X3 tf/MPa 400 X3 cf/MPa 700 S12f/MPa 100 S13/MPa 100 S23f/MPa 58 Matrix ρm/(kg·m−3) 980 Em/MPa 4000 νm 0.4 σy0m /MPa 270 Interface properties Nmax/MPa 60 Smax/MPa 90 Tmax/MPa 90 $ {G}_{\mathrm{n}}^{\mathrm{c}} $/(N·m−1) 0.2 $ {G}_{\mathrm{s}}^{\mathrm{c}} $/(N·m−1) 1.0 $ {G}_{\mathrm{t}}^{\mathrm{c}} $/(N·m−1) 1.0 Notes:X1 tf—Tensile strength of fiber bundles in 1 direction; X2 tf—Tensile strength of fiber bundles in 2 directions; X3 tf—Tensile strength of fiber bundles in 3 directions; X1 cf— Compressive strength of fiber bundles in the 1 direction; X2 cf—Compressive strength of fiber bundles in 2 directions; X3 cf—Compressive strength of fiber bundles in 3 directions; S12f—Shear strength of fiber bundles in 1-2 plane; S23f—Shear strength of fiber bundles in 2-3 planes; S13f—Shear strength of fiber bundles in 1-3 planes. ρm is matrix density; Em is Young 's modulus of matrix;νm is Poisson 's ratio of matrix; σy0m is yield strength of the matrix; Nmax is normal stress intensity of interface; Smax is first tangential stress intensity of interface; Tmax is second tangential stress intensity of interface; $ {G}_{\mathrm{n}}^{\mathrm{c}} $is normal critical fracture energy of interface; $ {G}_{\mathrm{s}}^{\mathrm{c}} $ is first tangential critical fracture energy of interface; $ {G}_{\mathrm{t}}^{\mathrm{c}} $ is second tangential critical fracture energy of interface. 表 3 正交切削试验参数
Table 3. Process parameters of orthogonal cutting experiment
v/(mm·min−1) ap/mm γ/(°) α/(°) 2000 0.1 15 12 Notes: v is cutting speed; ap is cutting depth; γ is working orthogonal rake of tool; α is working back angle of tool. -
[1] 陈燕, 葛恩德, 傅玉灿, 等. 碳纤维增强树脂基复合材料制孔技术研究现状与展望[J]. 复合材料学报, 2015, 32(2):301-316. doi: 10.13801/j.cnki.fhclxb.20150211.002CHEN Yan, GE Ende, FU Yucan, et al. Review and prospect of drilling technologies for carbon fiber reinforced polymer[J]. Acta Materiae Compositae Sinica,2015,32(2):301-316(in Chinese). doi: 10.13801/j.cnki.fhclxb.20150211.002 [2] 林刚. 碳纤维产业“聚”变发展—2020 全球碳纤维复合材料市场报告[J]. 纺织科学研究, 2021, 5:27-49.LIN Gang. The development of carbon fiber industry-2020 global carbon fiber composite market report[J]. Textile Science Research,2021,5:27-49(in Chinese). [3] FEITO N, CANTERO J L, et al. Experimental analysis of special tool geometries when drilling woven and multidirectional CFRPs[J]. Journal of Reinforced Plastics and Composites,2016,35(1):33-55. doi: 10.1177/0731684415612931 [4] GAO Z, CHEN L. A review of multi-scale numerical modeling of three-dimensional woven fabric[J]. Composite Structures,2021,263:113685. doi: 10.1016/j.compstruct.2021.113685 [5] ONAL L, ADANUR S. Modeling of elastic, thermal, and strength/failure analysis of two-dimensional woven composites—A review[J]. Applied Mechanics Reviews,2007,60:37. doi: 10.1115/1.2375143 [6] 杨晓文. 基于编织角动态变化的2 D编织CFRP力学性能仿真研究 [D]. 长春: 吉林大学, 2022.YANG Xiaowen. Simulation research on mechanical properties of 2 D braided CFRP based on dynamic change of braiding angle [D]. Changchun: Jilin University, 2022(in Chinese). [7] ZHAO Q, WANG W, LIU Y, et al. Multiscale modeling framework to predict the low-velocity impact and compression after impact behaviors of plain woven CFRP composites[J]. Composite Structures,2022,299:116090. doi: 10.1016/j.compstruct.2022.116090 [8] ZHANG X, SHI Y, LI Z X. Experimental study on the tensile behavior of unidirectional and plain weave CFRP laminates under different strain rates[J]. Composites Part B:Engineering,2019,164:524-536. doi: 10.1016/j.compositesb.2019.01.067 [9] 张铁纯, 杨晨晨, 王轩, 等. 平纹编织复合材料层合板静态压缩与压-压疲劳性能[J]. 航空材料学报, 2022, 42(2):64-72. doi: 10.11868/j.issn.1005-5053.2021.000106ZHANG Tiechun, YANG Chenchen, WANG Xuan, et al. Static compression and compression-compression fatigue properties of plain woven composite laminates[J]. Journal of Aeronautical Materials,2022,42(2):64-72(in Chinese). doi: 10.11868/j.issn.1005-5053.2021.000106 [10] SIDDIQUE A, SUN B, GU B. Structural influences of two-dimensional and three-dimensional carbon/epoxy composites on mode I fracture toughness behaviors with rate effects on damage evolution[J]. Journal of Industrial Textiles,2020,50(1):23-45. doi: 10.1177/1528083718819871 [11] KING M J, SOCRATE S. A continuum constitutive model for the mechanical behavior of woven fabrics[J]. International journal of solids and structures,2005,42(13):3867-3896. doi: 10.1016/j.ijsolstr.2004.10.030 [12] RATTAN R, BIJWE J, FAHIM M. Influence of weave of carbon fabric on low amplitude oscillating wear performance of Polyetherimide composites[J]. Wear,2007,262(5-6):727-735. doi: 10.1016/j.wear.2006.08.005 [13] NAIK N K, REDDY K S, Meduri S, et al. Interlaminar fracture characterization for plain weave fabric composites[J]. Journal of Materials Science,2002,37(14):2983-2987. doi: 10.1023/A:1016025232102 [14] 王冬峣, 赫晓东, 刘文博, 等. 二维编织复合材料在正交切削中的切削力和加工表面质量研究[J]. 玻璃钢/复合材料, 2017(12):77-82. doi: 10.3969/j.issn.1003-0999.2017.12.014WANG Dongyao, HE Xiaodong, LIU Wenbo, et al. Study on machining forces and machined surface quality of plane woven-fabric CFRP in orthogonal cutting experiment[J]. Composites Science and Engineering,2017(12):77-82(in Chinese). doi: 10.3969/j.issn.1003-0999.2017.12.014 [15] LIU S, WU D, ZHAO J, et al. The material removal mechanism in orthogonal cutting of woven AFRP[J]. Journal of Materials Science,2022,57(34):16301-16316. doi: 10.1007/s10853-022-07422-2 [16] SU F, YUAN J, SUN F, et al. Modeling and simulation of milling forces in milling plain woven carbon fiber-reinforced plastics[J]. The International Journal of Advanced Manufacturing Technology,2018,95(9):4141-4152. [17] ZHANG D, WANG H, BURKS AR, CONG W. Delamination in rotary ultrasonic machining of CFRP composites: finite element analysis and experimental implementation[J]. Int J Adv Manuf Technol,2020,107:3847-3858. doi: 10.1007/s00170-020-05310-0 [18] WONG I, TAN C L, AZMI A I, et al. Evaluations of mechanical properties and residual strength of drilled glass fiber reinforced polymer (GFRP) composites[J]. Applied Mechanics and Materials. Trans Tech Publications Ltd,2014,660:270-274. [19] 周井文, 黄久超, 杨叶, 等. 单向铺层与织物结构CFRP端铣加工表面质量对比分析[J]. 工具技术, 2021, 55(8):49-52. doi: 10.3969/j.issn.1000-7008.2021.08.007ZHOU Jingwen, HUANG Jiuchao, YANG Ye, et al, CHEN Yan. Analysis of surface integrity during end milling of unidirectional lamination and woven fabric structure CFRP[J]. Tool Engineering,2021,55(8):49-52(in Chinese). doi: 10.3969/j.issn.1000-7008.2021.08.007 [20] HINTZE W, CORDES M, KOERKEL G. Influence of weave structure on delamination when milling CFRP[J]. Journal of Materials Processing Technology,2015,216:199-205. doi: 10.1016/j.jmatprotec.2014.09.004 [21] MARIATTI M, NASIR M, ISMAIL H. Effect of sample cutting direction on mechanical properties of woven thermoplastic prepreg[J]. Polymer testing,2000,19(6):617-624. doi: 10.1016/S0142-9418(99)00032-X [22] LI H N, WANG J P, WU C Q. Damage behaviors of unidirectional CFRP in orthogonal cutting: A comparison between single-and multiple-pass strategies[J]. Composites Part B:Engineering,2020,185:107774. doi: 10.1016/j.compositesb.2020.107774 [23] 李树健, 周永超, 陈蓉, 等. 考虑孔隙缺陷的CFRP微观切削仿真与实验研究 [J/OL]. 复合材料学报: 1-122022-11-14]. LI Shujian, ZHOU Yongchao, CHEN Rong, et al. Simulation and experimental study of CFRP micro cutting considering voids defects [J/OL]. Acta Materiae Compositae Sinica, 1-12[2022-11-14](in Chinese). [24] 苏飞. 碳纤维增强复合材料切削加工技术及其应用研究 [D]. 南京: 南京理工大学, 2015.SU Fei. The cutting process technology and its application of carbon fiber-reinforced plastic [D]. Nanjing: Nanjing University of Science and Technology, 2015(in Chinese). [25] 邵兵. 大丝束碳纤维平纹编织复合材料孔边应力细观分析 [D]. 南昌: 南昌大学, 2018.SHAO Bing. The mesomechanical analysis of stresses near central hole in big carbon tow plain-woven composite [D]. Nanchang University, 2018 (in Chinese). [26] 周井文, 陈燕, 傅玉灿, 等. 纤维切削角对CFRP加工缺陷的影响规律[J]. 哈尔滨工业大学学报, 2015, 47(7):110-116. doi: 10.11918/j.issn.0367-6234.2015.07.018ZHOU Jingwen, CHEN Yan, FU Yuchan, et al. Influence of fiber cutting angle on the machining defects during slotting of CFRP[J]. Journal of Harbin Institute of Technology,2015,47(7):110-116(in Chinese). doi: 10.11918/j.issn.0367-6234.2015.07.018 [27] 张勋, 陈燕, 徐九华, 等. 大厚径碳纤维复合材料三维钻削有限元仿真及试验研究[J]. 金刚石与磨料磨具工程, 2020, 40(2):53-60. doi: 10.13394/j.cnki.jgszz.2020.2.0010ZHANG Xun, CHEN Yan, XU Jiuhua, et al. Finite element simulation of and experimental study on three - dimensional drilling of large diameter carbon fiber composites[J]. Diamond & Abrasives Engineering,2020,40(2):53-60(in Chinese). doi: 10.13394/j.cnki.jgszz.2020.2.0010 [28] SANTIUSTE C, SOLDANI X, MIGUELEZ M H. Machining FEM model of long fiber composites for aeronautical components[J]. Composite structures,2010,92(3):691-698. doi: 10.1016/j.compstruct.2009.09.021 [29] 齐振超, 刘书暖, 程晖, 等. 基于三维多相有限元的CFRP细观切削机理研究[J]. 机械工程学报, 2016, 52(15):170-176. doi: 10.3901/JME.2016.15.170QI Zhenchao, LIU Shunuan, CHEN Hui, et al. Research on the Mesoscopic Cutting Mechanism of CFRP Based onThree-dimensional Multiphase Finite Element Models[J]. Journal of Mechanical Engineering,2016,52(15):170-176(in Chinese). doi: 10.3901/JME.2016.15.170 [30] Liu Y, Li Q, Qi Z, et al. Scale-span modelling of dynamic progressive failure in drilling CFRPs using a tapered drill-reamer[J]. Composite Structures,2021,278:114710. doi: 10.1016/j.compstruct.2021.114710 [31] 杨光猛, 万小朋, 侯赤. 纤维束波动效应对平纹编织复合材料损伤行为的影响[J]. 复合材料学报, 2020, 37(1):132-139. doi: 10.13801/j.cnki.fhclxb.20190324.002YANG Guangmeng, WAN Xiaopeng, HOU Chi. Damage behavior of plain woven composites considering undulation effect of fiber bundles[J]. Acta Materiae Compositae Sinica,2020,37(1):132-139(in Chinese). doi: 10.13801/j.cnki.fhclxb.20190324.002 [32] BEDNARCYK B A, STIER B, SIMON J W, et al. Meso-and micro-scale modeling of damage in plain weave composites[J]. Composite Structures,2015,121:258-270. doi: 10.1016/j.compstruct.2014.11.013 -

计量
- 文章访问数: 273
- HTML全文浏览量: 167
- 被引次数: 0