留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

连续玻璃纤维和玻璃微珠共增强尼龙6复合材料的抗冲击性能

尹洪峰 薛飞彪 魏英 杨顺 汤云 袁蝴蝶 任小虎

尹洪峰, 薛飞彪, 魏英, 等. 连续玻璃纤维和玻璃微珠共增强尼龙6复合材料的抗冲击性能[J]. 复合材料学报, 2022, 40(0): 1-10
引用本文: 尹洪峰, 薛飞彪, 魏英, 等. 连续玻璃纤维和玻璃微珠共增强尼龙6复合材料的抗冲击性能[J]. 复合材料学报, 2022, 40(0): 1-10
Hongfeng YIN, Feibiao XUE, Ying WEI, Shun YANG, Yun TANG, Hudie YUAN, Xiaohu REN. Impact resistance of continuous glass fiber and glass bead co-reinforced nylon 6 composites[J]. Acta Materiae Compositae Sinica.
Citation: Hongfeng YIN, Feibiao XUE, Ying WEI, Shun YANG, Yun TANG, Hudie YUAN, Xiaohu REN. Impact resistance of continuous glass fiber and glass bead co-reinforced nylon 6 composites[J]. Acta Materiae Compositae Sinica.

连续玻璃纤维和玻璃微珠共增强尼龙6复合材料的抗冲击性能

详细信息
    通讯作者:

    魏英,博士,讲师,研究方向为聚合物基复合材料 E-mail:weiying@xauat.edu.cn

Impact resistance of continuous glass fiber and glass bead co-reinforced nylon 6 composites

  • 摘要: 低速冲击是聚合物基复合材料在运输和服役过程中常见损伤方式,常造成复合材料结构损伤、性能降低、承载能力下降,影响使用。针对2D纤维增强聚合物基复合材料在冲击载荷作用下抗分层能力差的问题,本文采用熔融挤出结合热压成型法制备了二元和三元尼龙6(PA6)基复合材料,对比研究了连续玻璃纤维(GF)、玻璃微珠(GB)以及两者共增强PA6基复合材料的摆锤冲击性能和落锤低速冲击响应。结果表明:(1)玻璃纤维和玻璃微珠能显著提高尼龙6的抗冲击性能,且玻璃纤维的增强效果明显高于玻璃微珠;(2)GB增强PA6基复合材料(GB/PA6)的冲击强度随GB加入量增大呈现先增大后降低的趋势,加入量为25wt%时冲击强度最大;冲击载荷作用下,25wt%GB/PA6的耗能机制除了界面脱粘和钉扎效应之外,还发现GB在PA6基体中的滑移耗能新机制;(3)GF和GB共增强PA6复合材料(GB-GF/PA6)中纤维起主要的增强作用,摆锤冲击实验和落锤冲击实验均证明存在协同增强效应;(4)GF和GB共增强的协同增强效应是由于共增强复合材料在冲击载荷作用下,抗Ⅱ型裂纹扩展能力提高,使得复合材料抗分层能力得到强化;从而证明在基体中引入适量球形玻璃微珠是提高2D纤维增强聚合物基复合材料抗低速冲击性能的一条经济和有效途径。

     

  • 图  1  PA6基复合材料制备流程图

    Figure  1.  Preparation process of PA6 composites

    PA6—Binary and ternary nylon 6; GB—Glass beads; GF—Glass fiber

    图  2  摆锤冲击测试样品尺寸图

    Figure  2.  The size of samples for the pendulum impact tests

    图  3  PA6基复合材料摆锤冲击强度:(a) GB/PA6;(b) GB-GF/PA6;(c) 冲击强度对比;(d) 25wt%GB/PA6和25wt%GB-GF/PA6

    Figure  3.  Pendulum impact strength of PA6 composites:(a) GB/PA6;(b) GB-GF/PA6;(c) Comparison of Impact Strength of PA6 composites;(d) 25wt%GB/PA6 and 25wt%GB-GF/PA6

    图  4  25wt%GB/PA6的冲击断口形貌:(a) 0.5wt% KH550改性GB;(b) 1.5wt% KH550改性GB;(c,d) 1.0wt% KH550改性GB

    Figure  4.  Impact fracture morphologies of 25wt%GB/PA6:(a) 0.5wt% KH550 modified GB;(b) 1.5wt% KH550 modified GB;(c,d) 1.0wt% KH550 modified GB

    图  5  GF/PA6和25wt%GB-GF/PA6冲击断口形貌:(a,b) GF/PA6;(c,d) 25wt%GB-GF/PA6

    Figure  5.  Impact fracture morphologies of GF/PA6 and 25wt%GB-GF/PA6:(a,b) GF/PA6;(c,d) 25wt%GB-GF/PA6

    图  6  PA6基复合材料的最大冲击力:(a)GB-GF/PA6;(b)PA6基复合材料从左至右:PA6, 20wt%GB/PA6, GF/PA6, 1.0wt%KH550改性20wt%GB-GF/PA6, 0.5wt%KH550改性20wt%GB-GF/PA6, 1.5wt%KH550改性20wt%GB-GF/PA6

    Figure  6.  Maximum impact forces of PA6 composites:(a)GB-GF/PA6;(b) PA6 based composites from left to right: PA6, 20wt%GB/PA6, GF/PA6, 1.0wt%KH550 modified 20wt%GB-GF/PA6, 0.5wt%KH550 modified 20wt%GB-GF/PA6, 1.5wt%KH550 modified 20wt%GB-GF/PA6

    图  7  PA6基复合材料的冲击应力-时间曲线和能量-时间曲线

    Figure  7.  Impact stress-time curves and energy-time curves of PA6 composites

    图  8  PA6基复合材料损伤区域形貌:(a) PA6;(b) 20wt%GB/PA6;(c) GF/PA6;(d) 20wt%GB-GF/PA6

    Figure  8.  Morphologies for damage parts of PA6 composites:(a) PA6;(b) 20wt%GB/PA6;(c) GF/PA6;(d) 20wt%GB-GF/PA6

    图  9  20wt%GB-GF/PA6层合板落锤冲击示意图和冲击断口形貌

    Figure  9.  Schematic diagram of drop hammer impact and impact fracture morphologies of 20wt%GB-GF/PA6

    表  1  PA6基复合材料冲击凹坑深度、损伤面积和耗损能量

    Table  1.   Laminate pit depth and damage area of PA6 composites

    SamplePA620wt%GB/PA6GF/PA620wt%GB-GF/PA6
    Pit depth /mmBreakdownBreakdown0.420.26
    Damage area /mm2SmashSmash907452
    Maximum absorbed energy /J9.6515.2939.3266.57
    下载: 导出CSV

    表  2  PA6基复合材料的冲击破坏能量耗损机制

    Table  2.   Energy dissipation mechanism for impact damage of PA6-based composites

    Material typeEnergy loss mechanism
    MatrixReinforcementInterfaceSynergistic effect
    PA6Matrix tensile and fracture---
    GB/PA6Matrix tensile and fractureParticle slip and crushDebonding, pinning and deflection-
    GF/PA6Matrix tensile and fractureFiber elongation, bridging, break and pulloutDebonding and deflection-
    GB-GF/PA6Matrix tensile and fractureFiber elongation, bridging, break and pullout, Particle slip and crushParticle debonding, Fiber debonding, Crack deflection and pinningSynergistic
    enhancement
    下载: 导出CSV

    表  3  PA6基复合材料的剪切强度

    Table  3.   Shear strength of PA6-based composites

    MaterialsPA625wt%GB/PA6GF/PA625wt%GB-GF/PA6
    Shear strength /MPa29.133.736.744.1
    Standard deviation0.961.511.391.71
    Strength increase value /MPa04.67.615.0
    下载: 导出CSV
  • [1] NASSIR N A, BIRCH R S, CANTWELL W J, et al. The perforation resistance of glass fibre reinforced PEKK composites[J]. Polymer Testing,2018,72:423-431. doi: 10.1016/j.polymertesting.2018.11.007
    [2] SARFRAZ M S, HONG H, KIM S S. Recent developments in the manufacturing technologies of composite components and their cost-effectiveness in the automotive industry: A review study[J]. Composite Structures,2021,266:113864. doi: 10.1016/j.compstruct.2021.113864
    [3] LIU P, BARLOW C Y. Wind turbine blade waste in 2050[J]. Waste Management,2017,62:229-240. doi: 10.1016/j.wasman.2017.02.007
    [4] SUTHERLAND L S. A review of impact testing on marine composite materials: Part I–Marine impacts on marine composites[J]. Composite Structures,2018,188:197-208. doi: 10.1016/j.compstruct.2017.12.073
    [5] RAPONI E, FIUMARELLA D, BORIA S, et al. Methodology for parameter identification on a thermoplastic composite crash absorber by the Sequential Response Surface Method and Efficient Global Optimization[J]. Composite Structures,2021,278:114646. doi: 10.1016/j.compstruct.2021.114646
    [6] ARIKAN V, SAYMAN O. Comparative study on repeated impact response of E-glass fiber reinforced polypropylene & epoxy matrix composites[J]. Composites Part B:Engineering,2015,83:1-6. doi: 10.1016/j.compositesb.2015.08.051
    [7] KANHERE S V, BERMUDEZ V, OGALE A A. Carbon and glass fiber reinforced thermoplastic matrix composites// Fiber Reinforced Composites[J]. Woodhead Publishing,2021:273-306.
    [8] BARILE M, LECCE L, IANNONE M, et al. Thermoplastic composites for aerospace applications[J]. Revolutionizing aircraft materials and processes,2020:87-114.
    [9] ANDREW J J, SRINIVASAN S M, AROCKIARAJAN A, et al. Parameters influencing the impact response of fiber-reinforced polymer matrix composite materials: A critical review[J]. Composite Structures,2019,224:111007. doi: 10.1016/j.compstruct.2019.111007
    [10] YU B, GENG C, ZHOU M, et al. Impact toughness of polypropylene/glass fiber composites: interplay between intrinsic toughening and extrinsic toughening[J]. Composites Part B:Engineering,2016,92:413-419. doi: 10.1016/j.compositesb.2016.02.040
    [11] SHAH S Z H, KARUPPANAN S, MEGAT-YUSOFF P S M, et al. Impact resistance and damage tolerance of fiber reinforced composites: A review[J]. Composite Structures,2019,217:100-121. doi: 10.1016/j.compstruct.2019.03.021
    [12] VÁRDAI R, LUMMERSTORFER T, PRETSCHUH C, et al. Comparative study of fiber reinforced PP composites: Effect of fiber type, coupling and failure mechanisms[J]. Composites Part A:Applied Science and Manufacturing,2020,133:105895. doi: 10.1016/j.compositesa.2020.105895
    [13] MOURITZ A P. Review of z-pinned laminates and sandwich composites[J]. Composites Part A:Applied Science and Manufacturing,2020,139:106128. doi: 10.1016/j.compositesa.2020.106128
    [14] PEGORIN F, PINGKARAWAT K, DAYNES S, et al. Influence of z-pin length on the delamination fracture toughness and fatigue resistance of pinned composites[J]. Composites Part B:Engineering,2015,78:298-307. doi: 10.1016/j.compositesb.2015.03.093
    [15] CHAZOT C A C, HART A J. Understanding and control of interactions between carbon nanotubes and polymers for manufacturing of high-performance composite materials[J]. Composites Science and Technology,2019,183:107795. doi: 10.1016/j.compscitech.2019.107795
    [16] TANG Y, YE L, ZHANG Z, et al. Interlaminar fracture toughness and CAI strength of fibre-reinforced composites with nanoparticles–A review[J]. Composites Science and Technology,2013,86:26-37. doi: 10.1016/j.compscitech.2013.06.021
    [17] KHAN M I, UMAIR M, HUSSAIN R, et al. Effect of Micro-fillers on the Performance of Thermoplastic Para Aramid Composites for Impact Applications[J]. Fibers and Polymers,2021,22(11):3120-3134. doi: 10.1007/s12221-021-0370-x
    [18] 赖鹏辉, 尹洪峰, 张静, 等. 纳米Al2O3-碳纤维多尺度增强聚酰胺基复合材料的制备及力学性能[J]. 复合材料学报, 2018, 35(3):493-500.

    LAI Penghui, YIN Hongfeng, ZHANG Jing, et al. Preparation and mechanical properties of nano Al2O3-carbon fiber multi-scale reinforced polyamide composites[J]. Acta Materiae Compositae Sinica,2018,35(3):493-500(in Chinese).
    [19] 李艳, 尹洪峰, 秦月, 等. 尼龙 6 基复合材料的抗冲击性能与协同增强效应[J]. 复合材料科学与工程, 2020(12):84-91. doi: 10.3969/j.issn.1003-0999.2020.12.014

    Li Yan, YIN Hongfeng, QIN Yue, et al. Impact properties and synergistic effect of nylon 6 based composites[J]. Composites Science And Engineering,2020(12):84-91(in Chinese). doi: 10.3969/j.issn.1003-0999.2020.12.014
    [20] RUSSO P, ACIERNO D, SIMEOLI G, et al. Flexural and impact response of woven glass fiber fabric/polypropylene composites[J]. Composites Part B:Engineering,2013,54:415-421. doi: 10.1016/j.compositesb.2013.06.016
    [21] KATUNIN A, PAWLAK S, WRONKOWICZ-KATUNIN A, et al. Damage progression in fibre reinforced polymer composites subjected to low-velocity repeated impact loading[J]. Composite Structures,2020,252:112735. doi: 10.1016/j.compstruct.2020.112735
    [22] XIAO L, WANG G H, QIU S, et al. Exploration of energy absorption and viscoelastic behavior of CFRPs subjected to low velocity impact[J]. Composites Part B:Engineering,2019,165:247-254. doi: 10.1016/j.compositesb.2018.11.126
    [23] AL-SHAMARY A K J, KARAKUZU R, ÖZDEMIR O. Low-velocity impact response of sandwich composites with different foam core configurations[J]. Journal of Sandwich Structures & Materials,2016,18(6):754-768.
    [24] 张亚文, 陈秉智, 石姗姗, 等. 格栅-蜂窝混式芯体夹芯结构的低速冲击性能[J]. 复合材料学报, 2022, 39(01):381-389.

    ZHANG Yawen, CHEN Bingzhi, SHI Shanshan, et al. Low-velocity impact performance of grid-honeycomb hybrid core sandwich structure[J]. Acta Materiae Compositae Sinica,2022,39(01):381-389(in Chinese).
    [25] YANG Z M, LIU J X, WANG F C, et al. Effect of fiber hybridization on mechanical performances and impact behaviors of basalt fiber/UHMWPE fiber reinforced epoxy composites[J]. Composite Structures,2019,229:111434. doi: 10.1016/j.compstruct.2019.111434
    [26] American Society for Testing and Materials. Standard test methods for determining the lzod pendulum impact resistance of plastics: ASTM D256—10[S]. West Conshohocken, United States: American Society for Testing and Materials International, 2018.
    [27] American Society for Testing and Materials. Standard test method for measuring the damage resistance of a fiber-reinforced polymer matrix composite to a drop-weight impact event: ASTM D7136—15[S]. West Conshohocken, United States: American Society for Testing and Materials International, 2015.
    [28] American Society for Testing and Materials. Standard test method for short-beam strength of polymer matrix composite materials and their laminates: ASTM D2344—16[S]. West Conshohocken, United States: American Society for Testing and Materials International, 2016.
  • 加载中
计量
  • 文章访问数:  101
  • HTML全文浏览量:  69
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-13
  • 录用日期:  2022-03-19
  • 修回日期:  2022-02-26
  • 网络出版日期:  2022-04-07

目录

    /

    返回文章
    返回