Impact resistance of continuous glass fiber and glass bead co-reinforced nylon 6 composites
-
摘要: 低速冲击是聚合物基复合材料在运输和服役过程中常见损伤方式,常造成复合材料结构损伤、性能降低、承载能力下降,影响使用。针对2D纤维增强聚合物基复合材料在冲击载荷作用下抗分层能力差的问题,本文采用熔融挤出结合热压成型法制备了二元和三元尼龙6(PA6)基复合材料,对比研究了连续玻璃纤维(GF)、玻璃微珠(GB)以及两者共增强PA6基复合材料的摆锤冲击性能和落锤低速冲击响应。结果表明:(1)玻璃纤维和玻璃微珠能显著提高尼龙6的抗冲击性能,且玻璃纤维的增强效果明显高于玻璃微珠;(2)GB增强PA6基复合材料(GB/PA6)的冲击强度随GB加入量增大呈现先增大后降低的趋势,加入量为25wt%时冲击强度最大;冲击载荷作用下,25wt%GB/PA6的耗能机制除了界面脱粘和钉扎效应之外,还发现GB在PA6基体中的滑移耗能新机制;(3)GF和GB共增强PA6复合材料(GB-GF/PA6)中纤维起主要的增强作用,摆锤冲击实验和落锤冲击实验均证明存在协同增强效应;(4)GF和GB共增强的协同增强效应是由于共增强复合材料在冲击载荷作用下,抗Ⅱ型裂纹扩展能力提高,使得复合材料抗分层能力得到强化;从而证明在基体中引入适量球形玻璃微珠是提高2D纤维增强聚合物基复合材料抗低速冲击性能的一条经济和有效途径。Abstract: Low-velocity impact is a common damage mode for polymer matrix composites during transportation and service, often results in structural damage, performance degradation, and loss of load-bearing capacity, which affects the use of the composites. To address the problem of poor delamination resistance of 2D fiber-reinforced polymer matrix composites under impact loading, binary and ternary nylon 6 (PA6)-based composites were prepared by melt extrusion combined with hot pressing, and the pendulum impact performance and drop hammer low-velocity impact response of continuous glass fiber (GF), glass beads (GB) and both co-reinforced PA6-based composites were comparatively investigated. The results show that: (1) glass fibers and glass beads can significantly improve the impact resistance of nylon 6, and the enhancement effect of glass fibers is significantly higher than that of glass beads; (2) The impact strength of GB-reinforced PA6-based composites (GB/PA6) showed a trend of increasing and then decreasing with increasing GB incorporation, with the maximum impact strength at 25wt% incorporation; the energy dissipation mechanism of 25wt% GB/PA6 under impact loading was found to be a new mechanism of slip energy dissipation of GB in PA6 matrix, in addition to interfacial debonding and pinning effects; (3) The fibers in GF and GB co-reinforced PA6 composites (GB-GF/PA6) play a major reinforcing role, and both pendulum impact tests and drop impact tests demonstrate a synergistic reinforcing effect; (4) The synergistic reinforcing effect of GF and GB co-reinforcement is due to the increased resistance to type II crack expansion of the co-reinforced composites under impact loading, resulting in the reinforcement of the composite against delamination; thus, demonstrating that the introduction of an appropriate amount of spherical glass beads into the matrix is an economical and effective way to improve the resistance of 2D fiber-reinforced polymer matrix composites to low-velocity impact.
-
Key words:
- glass bead /
- glass fiber /
- nylon 6 matrix composites /
- low speed impact /
- synergistic effect
-
图 6 PA6基复合材料的最大冲击力:(a)GB-GF/PA6;(b)PA6基复合材料从左至右:PA6, 20wt%GB/PA6, GF/PA6, 1.0wt%KH550改性20wt%GB-GF/PA6, 0.5wt%KH550改性20wt%GB-GF/PA6, 1.5wt%KH550改性20wt%GB-GF/PA6
Figure 6. Maximum impact forces of PA6 composites:(a)GB-GF/PA6;(b) PA6 based composites from left to right: PA6, 20wt%GB/PA6, GF/PA6, 1.0wt%KH550 modified 20wt%GB-GF/PA6, 0.5wt%KH550 modified 20wt%GB-GF/PA6, 1.5wt%KH550 modified 20wt%GB-GF/PA6
表 1 PA6基复合材料冲击凹坑深度、损伤面积和耗损能量
Table 1. Laminate pit depth and damage area of PA6 composites
Sample PA6 20wt%GB/PA6 GF/PA6 20wt%GB-GF/PA6 Pit depth /mm Breakdown Breakdown 0.42 0.26 Damage area /mm2 Smash Smash 907 452 Maximum absorbed energy /J 9.65 15.29 39.32 66.57 表 2 PA6基复合材料的冲击破坏能量耗损机制
Table 2. Energy dissipation mechanism for impact damage of PA6-based composites
Material type Energy loss mechanism Matrix Reinforcement Interface Synergistic effect PA6 Matrix tensile and fracture - - - GB/PA6 Matrix tensile and fracture Particle slip and crush Debonding, pinning and deflection - GF/PA6 Matrix tensile and fracture Fiber elongation, bridging, break and pullout Debonding and deflection - GB-GF/PA6 Matrix tensile and fracture Fiber elongation, bridging, break and pullout, Particle slip and crush Particle debonding, Fiber debonding, Crack deflection and pinning Synergistic
enhancement表 3 PA6基复合材料的剪切强度
Table 3. Shear strength of PA6-based composites
Materials PA6 25wt%GB/PA6 GF/PA6 25wt%GB-GF/PA6 Shear strength /MPa 29.1 33.7 36.7 44.1 Standard deviation 0.96 1.51 1.39 1.71 Strength increase value /MPa 0 4.6 7.6 15.0 -
[1] NASSIR N A, BIRCH R S, CANTWELL W J, et al. The perforation resistance of glass fibre reinforced PEKK composites[J]. Polymer Testing,2018,72:423-431. doi: 10.1016/j.polymertesting.2018.11.007 [2] SARFRAZ M S, HONG H, KIM S S. Recent developments in the manufacturing technologies of composite components and their cost-effectiveness in the automotive industry: A review study[J]. Composite Structures,2021,266:113864. doi: 10.1016/j.compstruct.2021.113864 [3] LIU P, BARLOW C Y. Wind turbine blade waste in 2050[J]. Waste Management,2017,62:229-240. doi: 10.1016/j.wasman.2017.02.007 [4] SUTHERLAND L S. A review of impact testing on marine composite materials: Part I–Marine impacts on marine composites[J]. Composite Structures,2018,188:197-208. doi: 10.1016/j.compstruct.2017.12.073 [5] RAPONI E, FIUMARELLA D, BORIA S, et al. Methodology for parameter identification on a thermoplastic composite crash absorber by the Sequential Response Surface Method and Efficient Global Optimization[J]. Composite Structures,2021,278:114646. doi: 10.1016/j.compstruct.2021.114646 [6] ARIKAN V, SAYMAN O. Comparative study on repeated impact response of E-glass fiber reinforced polypropylene & epoxy matrix composites[J]. Composites Part B:Engineering,2015,83:1-6. doi: 10.1016/j.compositesb.2015.08.051 [7] KANHERE S V, BERMUDEZ V, OGALE A A. Carbon and glass fiber reinforced thermoplastic matrix composites// Fiber Reinforced Composites[J]. Woodhead Publishing,2021:273-306. [8] BARILE M, LECCE L, IANNONE M, et al. Thermoplastic composites for aerospace applications[J]. Revolutionizing aircraft materials and processes,2020:87-114. [9] ANDREW J J, SRINIVASAN S M, AROCKIARAJAN A, et al. Parameters influencing the impact response of fiber-reinforced polymer matrix composite materials: A critical review[J]. Composite Structures,2019,224:111007. doi: 10.1016/j.compstruct.2019.111007 [10] YU B, GENG C, ZHOU M, et al. Impact toughness of polypropylene/glass fiber composites: interplay between intrinsic toughening and extrinsic toughening[J]. Composites Part B:Engineering,2016,92:413-419. doi: 10.1016/j.compositesb.2016.02.040 [11] SHAH S Z H, KARUPPANAN S, MEGAT-YUSOFF P S M, et al. Impact resistance and damage tolerance of fiber reinforced composites: A review[J]. Composite Structures,2019,217:100-121. doi: 10.1016/j.compstruct.2019.03.021 [12] VÁRDAI R, LUMMERSTORFER T, PRETSCHUH C, et al. Comparative study of fiber reinforced PP composites: Effect of fiber type, coupling and failure mechanisms[J]. Composites Part A:Applied Science and Manufacturing,2020,133:105895. doi: 10.1016/j.compositesa.2020.105895 [13] MOURITZ A P. Review of z-pinned laminates and sandwich composites[J]. Composites Part A:Applied Science and Manufacturing,2020,139:106128. doi: 10.1016/j.compositesa.2020.106128 [14] PEGORIN F, PINGKARAWAT K, DAYNES S, et al. Influence of z-pin length on the delamination fracture toughness and fatigue resistance of pinned composites[J]. Composites Part B:Engineering,2015,78:298-307. doi: 10.1016/j.compositesb.2015.03.093 [15] CHAZOT C A C, HART A J. Understanding and control of interactions between carbon nanotubes and polymers for manufacturing of high-performance composite materials[J]. Composites Science and Technology,2019,183:107795. doi: 10.1016/j.compscitech.2019.107795 [16] TANG Y, YE L, ZHANG Z, et al. Interlaminar fracture toughness and CAI strength of fibre-reinforced composites with nanoparticles–A review[J]. Composites Science and Technology,2013,86:26-37. doi: 10.1016/j.compscitech.2013.06.021 [17] KHAN M I, UMAIR M, HUSSAIN R, et al. Effect of Micro-fillers on the Performance of Thermoplastic Para Aramid Composites for Impact Applications[J]. Fibers and Polymers,2021,22(11):3120-3134. doi: 10.1007/s12221-021-0370-x [18] 赖鹏辉, 尹洪峰, 张静, 等. 纳米Al2O3-碳纤维多尺度增强聚酰胺基复合材料的制备及力学性能[J]. 复合材料学报, 2018, 35(3):493-500.LAI Penghui, YIN Hongfeng, ZHANG Jing, et al. Preparation and mechanical properties of nano Al2O3-carbon fiber multi-scale reinforced polyamide composites[J]. Acta Materiae Compositae Sinica,2018,35(3):493-500(in Chinese). [19] 李艳, 尹洪峰, 秦月, 等. 尼龙 6 基复合材料的抗冲击性能与协同增强效应[J]. 复合材料科学与工程, 2020(12):84-91. doi: 10.3969/j.issn.1003-0999.2020.12.014Li Yan, YIN Hongfeng, QIN Yue, et al. Impact properties and synergistic effect of nylon 6 based composites[J]. Composites Science And Engineering,2020(12):84-91(in Chinese). doi: 10.3969/j.issn.1003-0999.2020.12.014 [20] RUSSO P, ACIERNO D, SIMEOLI G, et al. Flexural and impact response of woven glass fiber fabric/polypropylene composites[J]. Composites Part B:Engineering,2013,54:415-421. doi: 10.1016/j.compositesb.2013.06.016 [21] KATUNIN A, PAWLAK S, WRONKOWICZ-KATUNIN A, et al. Damage progression in fibre reinforced polymer composites subjected to low-velocity repeated impact loading[J]. Composite Structures,2020,252:112735. doi: 10.1016/j.compstruct.2020.112735 [22] XIAO L, WANG G H, QIU S, et al. Exploration of energy absorption and viscoelastic behavior of CFRPs subjected to low velocity impact[J]. Composites Part B:Engineering,2019,165:247-254. doi: 10.1016/j.compositesb.2018.11.126 [23] AL-SHAMARY A K J, KARAKUZU R, ÖZDEMIR O. Low-velocity impact response of sandwich composites with different foam core configurations[J]. Journal of Sandwich Structures & Materials,2016,18(6):754-768. [24] 张亚文, 陈秉智, 石姗姗, 等. 格栅-蜂窝混式芯体夹芯结构的低速冲击性能[J]. 复合材料学报, 2022, 39(01):381-389.ZHANG Yawen, CHEN Bingzhi, SHI Shanshan, et al. Low-velocity impact performance of grid-honeycomb hybrid core sandwich structure[J]. Acta Materiae Compositae Sinica,2022,39(01):381-389(in Chinese). [25] YANG Z M, LIU J X, WANG F C, et al. Effect of fiber hybridization on mechanical performances and impact behaviors of basalt fiber/UHMWPE fiber reinforced epoxy composites[J]. Composite Structures,2019,229:111434. doi: 10.1016/j.compstruct.2019.111434 [26] American Society for Testing and Materials. Standard test methods for determining the lzod pendulum impact resistance of plastics: ASTM D256—10[S]. West Conshohocken, United States: American Society for Testing and Materials International, 2018. [27] American Society for Testing and Materials. Standard test method for measuring the damage resistance of a fiber-reinforced polymer matrix composite to a drop-weight impact event: ASTM D7136—15[S]. West Conshohocken, United States: American Society for Testing and Materials International, 2015. [28] American Society for Testing and Materials. Standard test method for short-beam strength of polymer matrix composite materials and their laminates: ASTM D2344—16[S]. West Conshohocken, United States: American Society for Testing and Materials International, 2016. -

计量
- 文章访问数: 100
- HTML全文浏览量: 69
- 被引次数: 0