Preparation of modified MXene material and its adsorption performance for Sr2+
-
摘要:
目的 本文选择以四元TiAlCN MAX为原相,对多层TiCNT MXene进行改性制备处理,并评估其对模拟放射性废水中Sr的吸附性能。 方法 借助有机小分子四甲基氢氧化铵(TMAOH)作插层剂,对多层TiCNT MXene进行改性制备处理,优化产物TiCNT/TMAOH的合成条件,并采用SEM-EDS、XRD、BET和FTIR等对改性前后的样品进行表征分析。 结果 复合材料TiCNT/TMAOH及其对模拟废水中Sr的吸附性能体现在①插层剂TMAOH将多层TiCNT的层间距由1.22 nm增大到1.48 nm,比表面积提高到3.154 m·g,同时提高了材料表面的氧官能团含量;②改性后的TiCNT/TMAOH对Sr的吸附去除率由原来的56.38%提高到99.78%,且可在弱酸性和碱性条件下(5~11)有效吸附除Sr;③在Na和K的质量浓度为500 mg∙L,具有较强的抗干扰能力,对Sr的去除率为64.54%~75.44%,竞争离子的抑制顺序为CaMgKNaCs;④ TiCNT/TMAOH在吸附除Sr中具有超快动力学(10 min,去除率为99.28%),吸附过程符合准二级动力学模型(1.00≥≥0.9986),化学吸附是主要的速控步骤;⑤吸附等温线符合R-P(0.999≥≥0.991)模型,产生吸附效果的动态点位于特定的位置,升温有利于吸附过程的进行;⑥经过四次的循环再生后,对Sr的去除率为69.56%,具有一定的再生性能;⑦在以自来水和湖水为背景配制的模拟含Sr废水中,可分别去除93.80%和68.49%的Sr;⑧TiCNT/TMAOH对Sr的吸附机制可能包括以下个方面:1)-N=与Sr、C-N与Sr、Ti-N与Sr、Ti-F与Sr以及Ti-O与Sr之间的螯合作用;2)负的表面电荷与Sr之间的静电作用;3)Ti-OH上的H与Sr之间的离子交换作用;4)层间截留作用。 结论 插层剂TMAOH的引入,使得改性后的多层TiCNT/TMAOH能够有效去除模拟废水中的Sr,在pH为6,温度为313 K时,对Sr的最大吸附容量为41.91 mg∙g,其吸附容量有待进一步提高。 Abstract: Ti3CNTx/TMAOH was prepared when tetramethylammonium hydroxide(TMAOH) was selected as the intercalating agent. Adsorption performance of Ti3CNTx/TMAOH on Sr2+ in simulated radioactive wastewater was evaluated. The synthesized Ti3CNTx/TMAOH was characterized by SEM-EDS, XRD, BET and FTIR. In the batch experiment, the effects of the dosage of adsorbent Ti3CNTx/TMAOH, time, pH and competitive ions on Sr2+ removal were investigated. The results show that the removal rate of Sr2+ is 99.28% when the dosage is 1.0 g·L−1, pH is 6, and the time is 10 min. The inhibition order of competitive ions is Ca2+$ \text{ > > } $ Mg2+$ \text{ > } $ K+$ \text{ > } $ Na+$ \text{ > } $ Cs+. After four adsorption-desorption cycles, the Sr2+ removal rate is 69.56%. The adsorption is consistent with the pseudo-second-order kinetic. The adsorption isotherm data conforms to the R-P model. 93.80% and 68.49% Sr2+ can be removed in tap water and lake water, respectively. Sr2+ is adsorbed by Ti3CNTx/TMAOH via ion exchange, surface chelation, electrostatic adsorption and interlayer interception.-
Key words:
- MXene /
- tetramethylammonium hydroxide /
- modified materials /
- adsorption /
- Sr2+
-
表 1 Ti3CNTx和Ti3CNTx/TMAOH的比表面积、孔容和孔径数据
Table 1. The surface area, pore volume, and pore diameter of Ti3CNTx and Ti3CNTx/TMAOH
Material Surface
area/
(m2·g−1)Pore
volume/
(cm3·g1)Pore
diameter/
nmTi3CNTx 1.215 0.0044 38.01 Ti3CNTx/TMAOH 3.154 0.0029 16.13 表 2 Ti3CNTx/TMAOH吸附Sr2+的动力学模型参数
Table 2. The parameters of adsorption kinetics model of Sr2+ adsorption on Ti3CNTx/TMAOH
kinetic model 5.5/(mg∙L−1) 10/(mg∙L−1) 30/(mg∙L−1) 50/(mg∙L−1) Pseudo-first-order qe/(mg∙g−1) 25.02 22.80 10.49 8.061 k1×10−4/(min−1) 0.01869 5.540 34.50 127.10 R2 0.1065 0.6222 0.6940 0.9302 Pseudo-second-order qe/(mg∙g−1) 4.988 8.829 24.16 29.83 k2/(g∙mg−1∙min−1) 0.1573 0.08457 0.01053 0.00587 R2 1.00 0.9986 0.9999 0.9998 Notes: qe is the adsorption capacity at equilibrium time; k1 and k2 are reaction rate constants of pseudo-first-order and pseudo-second-order equations, respectively; R2 is the correlation coefficient. 表 3 Ti3CNTx/TMAOH吸附Sr2+的吸附等温线拟合参数
Table 3. Fitting parameters of adsorption isotherm for Sr2+ on Ti3CNTx/TMAOH
t/℃ Langmuir Freundlich R-P qmax/(mg∙g−1) KL/(L∙mg−1) R2 KF/(mg∙g−1) n R2 A/(L∙g−1) B g R2 20 25.04 0.033 0.996 2.90 3 0.970 10.7 13 0.89 0.999 30 37.47 0.036 0.974 3.37 2 0.886 11.9 16 0.96 0.991 40 41.91 0.038 0.990 4.98 3 0.917 12.5 18 0.99 0.999 Notes: t is the reaction temperature; qmax represents the maximum adsorption capacity of Langmuir; KL is Langmuir adsorption constant; KF is the Freundlich adsorption constant, and n is the constant related to the adsorption strength; A and B are constants related to the adsorption capacity, and the index g is an empirical constant between 0 and 1. 表 4 不同吸附剂对Sr2+的吸附去除效果对比
Table 4. Comparison of adsorption and removal effects of different adsorbents for Sr2+
Adsorbents qmax/(mg∙g−1) C0/(mg∙L−1) t/min pH References MnxOy-SbmOn 30.20 4.4 ~30 3.0-9.0 [25] ZrO2-MnO2 30.86 100 ~100 4.0-8.0 [26] GO 23.83 7.4 — 6.5-11.0 [27] M/GO 9.81 4.0 360 1.7-11.8 [28] Commercial AC 7.58 50 — 8.0-11.0 [29] Ti3CNTx/TMAOH 41.91 5.5 ~120 5-11 This study Notes: C0 is the initial Sr2+ concentration of, t is the adsorption equilibrium time. 表 5 Ti3CNTx/TMAOH吸附Sr2+的热力学参数Table 5 Thermodynamic parameter for adsorption Sr2+ on Ti3CNTx/TMAOH
ΔG/(kJ∙mol−1) ΔH/
(kJ∙mol−1)ΔS/
(J∙K−1∙mol−1)293 K 303 K 313 K −25.34 −26.39 −27.41 4.95 103.42 Notes: ΔG is Gibbs free energy change; ΔH is enthalpy change; ΔS is entropy change. 表 6 Ti3CNTx/TMAOH在不同水环境下去除Sr2+前后的主要水质参数
Table 6. The main water quality parameters after Sr2+ removal by Ti3CNTx/TMAOH in different water environments
pH Na+/
(mg∙L−1)K+/
(mg∙L−1)Mg2+/
(mg∙L−1)Ca2+/
(mg∙L−1)Sr2+/
(mg∙L−1)TW 6.23 8.230 3.382 9.823 45.46 5.500 1.0/(g∙L−1) 8.129 2.999 7.777 23.38 1.572 3.0/(g∙L−1) 7.895 2.861 3.772 7.616 0.3411 LW 7.12 23.2 39.98 44.33 98.57 5.982 1.0/(g∙L−1) 228.1 38.00 41.39 80.69 3.347 3.0/(g∙L−1) 216.1 33.86 35.93 56.65 1.885 Notes: TW and LW represent tap water and lake water, respectively. -
[1] LIU F F, ZHOU A G, CHEN J F, et al. Preparation of Ti3C2 and Ti2C MXenes by fluoride salts etching and methane adsorptive properties[J]. Applied Surface Science,2017,416:781-789. doi: 10.1016/j.apsusc.2017.04.239 [2] 杨挺. 核电站化学废水的处理技术浅析[J]. 科技视界, 2019, 259(1):217-218. doi: 10.19694/j.cnki.issn2095-2457.2019.01.092YANG Ting. Treatment technology of chemical wastewater in nuclear power station[J]. Scientific and technological horizon,2019,259(1):217-218(in Chinese). doi: 10.19694/j.cnki.issn2095-2457.2019.01.092 [3] WANG Y, NIU B, ZHANG X, et al. Review—Ti3C2Tx MXene: an emerging two-dimensional layered material in water treatment[J]. ECS Journal of Solid State Science and Technology,2021,10(4):047002-047016. doi: 10.1149/2162-8777/abf2de [4] HE X, JIN S, MIAO L, et al. 3 D hydroxylated MXene/carbon nanotubes composite as scaffold for dendrite-free sodium-metal electrodes[J]. Angewandte Chemie,2020,132(38):16848-16854. [5] YAGHOUB M. MXenes and other 2 D nanosheets for modification of polyamide thin film nanocomposite membranes for desalination[J]. Separation and Purification Technology,2022,289:120777-120782. doi: 10.1016/j.seppur.2022.120777 [6] HWANG S K, KANG S M, RETHINASABAPATHY M, et al. MXene: An emerging two-dimensional layered material for removal of radioactive pollutants[J]. Chemical Engineering Journal,2020,397:125428. doi: 10.1016/j.cej.2020.125428 [7] LU M, HAN W, LI H, et al. There is plenty of space in the MXene layers: the confinement and fillings[J]. Journal of Energy Chemistry,2020,48:344-363. doi: 10.1016/j.jechem.2020.02.032 [8] IBRAHIM Y, KASSAB A, EID K, et al. Unveiling fabrication and environmental remediation of MXene-Based nanoarchitectures in toxic metals removal from wastewater: strategy and mechanism[J]. Nanomaterials,2020,10(5):885-914. doi: 10.3390/nano10050885 [9] LI S, WANG L, PENG J, et al. Efficient thorium(IV) removal by two-dimensional Ti2CTx MXene from aqueous solution[J]. Chemical Engineering Journal,2019,366:192-199. doi: 10.1016/j.cej.2019.02.056 [10] RETHINASABAPATHY M, HWANG K S, KANG S M, et al. Amino-functionalized POSS nanocage-intercalated Titanium Carbide(Ti3C2Tx) MXene stacks for efficient cesium and strontium radionuclide sequestration[J]. Journal of Hazardous Materials,2021,418:126315-126320. doi: 10.1016/j.jhazmat.2021.126315 [11] WANG L, TAO W, YUAN L, et al. Rational control of the interlayer space inside two-dimensional titanium carbides for highly efficient uranium removal and imprisonment[J]. Chemical Communications,2017,53(89):12084-12087. doi: 10.1039/C7CC06740B [12] ZHANG Z G, GU P, ZHANG M D, et al. Synthesis of a robust layered metal sulfide for rapid and effective removal of Sr2+ from aqueous solutions[J]. Chemical Engineering Journal,2019,372:1205-1215. doi: 10.1016/j.cej.2019.04.193 [13] QADA E, ALLEN S J, WALKER G M. Adsorption of basic dyes from aqueous solution onto activated carbons[J]. Chemical Engineering Journal,2008,135(3):174-184. doi: 10.1016/j.cej.2007.02.023 [14] YU B, YUEN A, XU X, et al. Engineering MXene surface with POSS for reducing fire hazards of polystyrene with enhanced thermal stability[J]. Journal of Hazardous Materials,2020,401:123342. [15] DENG S B, BAI R B. Aminated polyacrylonitrile fibers for humic acid adsorption: behaviors and mechanisms[J]. Environmental Science & Technology,2003,37(24):5799-5805. [16] 吴刚. 材料结构表征及应用[J]. 北京:化学工业出版社, 2001:15-21.WU Gang. Characterization and application of material structure[J]. Beijing:Chemical Industry Press,2001:15-21(in Chinese). [17] LIN H, CHEN L, LU X, et al. Two-dimensional titanium carbide MXenes as efficient non-noble metal electrocatalysts for oxygen reduction reaction[J]. Science China Materials,2018,62(5):662-670. [18] XU G, WANG X, GONG S, et al. Solvent-regulated preparation of well-intercalated Ti3C2Tx MXene nanosheets and application for highly effective electromagnetic wave absorption[J]. Nanotechnology,2018,29(35):355201. doi: 10.1088/1361-6528/aac8f6 [19] QIAN A, HYEON S E, SEO J Y, et al. Capacitance changes associated with cation-transport in free-standing flexible Ti3C2Tx (T-O, F, OH) MXene film electrodes[J]. Electrochimica Acta,2018,266:86-93. doi: 10.1016/j.electacta.2018.02.019 [20] DU F, TANG H, PAN L, et al. Environmental friendly scalable production of colloidal 2 D Titanium Carbonitride MXene with minimized nanosheets restacking for excellent cycle life lithium-ion batteries[J]. Electrochimica Acta,2017,235(3):690-699. [21] ZHANG M, GU P, YAN S, et al. Na/Zn/Sn/S (NaZTS): Quaternary metal sulfide nanosheets for efficient adsorption of radioactive strontium ions[J]. Chemical Engineering Journal,2020,379:122227-122236. doi: 10.1016/j.cej.2019.122227 [22] SHAHZAD A, OH J M, RASOOL K, et al. Strontium ions capturing in aqueous media using exfoliated titanium aluminum carbide (Ti2AlC MAX phase)[J]. Journal of Nuclear Materials,2021,549:152916-152924. doi: 10.1016/j.jnucmat.2021.152916 [23] MU W, DU S, YU Q, et al. Improving barium ions adsorption on two-dimensional titanium carbide by surface modification[J]. Dalton Transactions,2018,47(25):8375-8381. doi: 10.1039/C8DT00917A [24] SHAHZAD A, NAWAZ M, MOZTAHIDA M, et al. Ti3C2Tx MXene core-shell spheres for ultrahigh removal of mercuric ions[J]. Chemical Engineering Journal,2019,368:400-408. doi: 10.1016/j.cej.2019.02.160 [25] ZHANG L, WEI J Y, ZHAO X, et al. Removal of strontium (II) and cobalt (II) from acidic solution by manganese antimonate[J]. Chemical Engineering Journal,2016,302:733-743. doi: 10.1016/j.cej.2016.05.040 [26] WHITE D A, LABAYRU R. Synthesis of a manganese dioxide-silica hydrous composite and its properties as a sorption material for strontium[J]. Industrial and Engineering Chemistry Research,1991,30(1):207-210. doi: 10.1021/ie00049a031 [27] WEN T, WU X L, LIU M C, et al. Efficient capture of strontium from aqueous solutions using graphene oxide-hydroxyapatite nanocomposites[J]. Dalton Transactions,2014,43(20):7464-7472. doi: 10.1039/c3dt53591f [28] DING N, KANATZIDIS M G. Selective incarceration of cesium ions by venus flytrap action of a flexible framework sulfide[J]. Nature Chemistry,2010,2(3):187-191. doi: 10.1038/nchem.519 [29] MENG R, CHEN T, ZHANG Y, et al. Development, modification, and application of low-cost and available biochar derived from corn straw for the removal of vanadium (V) from aqueous solution and real contaminated groundwater[J]. RSC Advances,2018,8(38):21480-21494. doi: 10.1039/C8RA02172D [30] DENG S B, YU G, XIE S H, et al. Enhanced adsorption of arsenate on the aminated fibers: sorption behavior and uptake mechanism[J]. Langmuir,2008,24(19):10961-10967. doi: 10.1021/la8023138 [31] FARD A K, MCKAY G, CHAMOUN R, et al. Barium removal from synthetic natural and produced water using MXene as two dimensional(2-D) Nanosheet Adsorbent[J]. Chemical Engineering Journal,2017,317:331-342. doi: 10.1016/j.cej.2017.02.090 [32] XU F J, WANG Z H, YANG W T. Surface functionalization of polycaprolactone films via surface-initiated atom transfer radical polymerization for covalently coupling cell-adhesive biomolecules[J]. Biomaterials,2010,31(12):3139-3147. doi: 10.1016/j.biomaterials.2010.01.032 [33] DENG S, ZHENG Y Q, XU F J, et al. Highly efficient sorption of perfluorooctane sulfonate and perfluorooctanoate on a quaternized cotton prepared by atom transfer radical polymerization[J]. Chemical Engineering Journal,2012,193-194:154-160. doi: 10.1016/j.cej.2012.04.005 [34] ZHANG G, WANG T, XU Z, et al. Synthesis of amino-functionalized Ti3C2Tx MXene by alkalization-grafting modification for efficient lead adsorption[J]. Chemical Communications,2020,56(76):11283-11286. doi: 10.1039/D0CC04265J [35] CHENG Z, ZHU X, SHI Z L, et al. Polymer microspheres with permanent antibacterial surface from surface-initiated atom transfer radical polymerization[J]. Industrial & Engineering Chemistry Research,2005,44(18):7098-7104. [36] ZHANG P, WANG L, HUANG Z, et al. Aryl diazonium-assisted amidoximation of MXene for boosting water stability and uranyl sequestration via electrochemical sorption[J]. ACS Applied Materials & Interfaces,2020,12(13):15579-15587. [37] SHU C, XIANG Y, BANKS M K, et al. Polyoxometalate-coupled MXene nanohybridviapoly (ionic liquid) linkers and its electrode for enhanced supercapacitive performance[J]. Nanoscale,2018,10(42):20043-20052. doi: 10.1039/C8NR05760E [38] KIM S J, KOH H J, REN C E, et al. Metallic Ti3C2Tx MXene gas sensors with ultrahigh signal-to-noise ratio[J]. ACS Nano,2018,12(2):986-993. doi: 10.1021/acsnano.7b07460 [39] WANG H, CUI H, SONG X, et al. Facile synthesis of heterojunction of MXenes/TiO2 nanoparticles towards enhanced hexavalent chromium removal[J]. Journal of Colloid and Interface Science,2019,561:46-57. -

计量
- 文章访问数: 188
- HTML全文浏览量: 91
- 被引次数: 0