留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

MXene改性材料的制备及其吸附除Sr2+性能

张鹏丽 武莉娅 杨宗政 吴志国 曹井国

张鹏丽, 武莉娅, 杨宗政, 等. MXene改性材料的制备及其吸附除Sr2+性能[J]. 复合材料学报, 2023, 40(10): 5678-5691. doi: 10.13801/j.cnki.fhclxb.20221222.001
引用本文: 张鹏丽, 武莉娅, 杨宗政, 等. MXene改性材料的制备及其吸附除Sr2+性能[J]. 复合材料学报, 2023, 40(10): 5678-5691. doi: 10.13801/j.cnki.fhclxb.20221222.001
ZHANG Pengli, WU Liya, YANG Zongzheng, et al. Preparation of modified MXene material and its adsorption performance for Sr2+[J]. Acta Materiae Compositae Sinica, 2023, 40(10): 5678-5691. doi: 10.13801/j.cnki.fhclxb.20221222.001
Citation: ZHANG Pengli, WU Liya, YANG Zongzheng, et al. Preparation of modified MXene material and its adsorption performance for Sr2+[J]. Acta Materiae Compositae Sinica, 2023, 40(10): 5678-5691. doi: 10.13801/j.cnki.fhclxb.20221222.001

MXene改性材料的制备及其吸附除Sr2+性能

doi: 10.13801/j.cnki.fhclxb.20221222.001
基金项目: 天津市卤水化工与资源生态化利用重点实验室开放基金资助项目(BCERE201902);国家科技重大项目子项目(2017 ZX07107-001);天津市教委科研计划项目(自然科学)(2019 KJ225)
详细信息
    通讯作者:

    曹井国,博士,副教授,硕士生导师,研究方向为水污染防治技术 E-mail:cjg@tust.edu.cn

  • 中图分类号: O647.33;TB333

Preparation of modified MXene material and its adsorption performance for Sr2+

Funds: The Foundation of Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization (BCERE201902); Sub Project of National Science and Technology Major Projects (2017 ZX07107-001); Scientific Research Program of Tianjin Municipal Education Commission (Natural Science) (2019 KJ225)
  • 摘要: 为了评估Ti3CNTx/TMAOH材料对模拟放射性废水中Sr2+的吸附性能,选用四甲基氢氧化铵(TMAOH)作插层剂,对其进行改性制备处理,优化产物Ti3CNTx/TMAOH的合成条件,并采用SEM-EDS、XRD、BET和FTIR等对改性前后的样品进行表征分析。序批式实验中考察了吸附剂Ti3CNTx/TMAOH的投加量、时间、pH和竞争离子等因素对除Sr2+效果的影响。结果表明:在投加量为1.0 g∙L−1、pH为6、时间为10 min时,对Sr2+的去除率可达99.28%。竞争离子的抑制顺序为Ca2+$ \text{ > > } $Mg2+$ \text{ > } $K+$ \text{ > } $Na+$ \text{ > } $Cs+。经历4次循环再生后,对Sr2+的去除率为69.56%。整个吸附过程符合准二级动力学模型,吸附等温线符合Redlich-Peterson (R-P)模型。在以自来水和湖水为背景配制的模拟含Sr2+废水中,可分别去除93.80%和68.49%的Sr2+。结合各种表征结果分析,表明Ti3CNTx/TMAOH对Sr2+优异的吸附机制可归因于离子交换、表面螯合、静电吸附和层间截留作用。

     

  • 图  1  Ti3CNTx插层改性前表面 (a) 和断面 (c) 及改性后表面 (b) 和断面 (d) 的SEM图像

    Figure  1.  SEM images of surface (a) and cross section (c) before Ti3CNTx modification, and surface (b) and cross section (d) after modification

    图  2  Ti3CNTx (a) 和Ti3CNTx/四甲基氢氧化铵(TMAOH) (b) 的N2吸脱附及孔径图

    Figure  2.  N2 adsorption-desorption and pore size of Ti3CNTx (a) and Ti3CNTx/tetramethylammonium hydroxide (TMAOH) (b)

    图  3  Ti3CNTx (a) 和Ti3CNTx/TMAOH (b) 的EDS能谱

    Figure  3.  EDS spectra of Ti3CNTx (a) and Ti3CNTx/TMAOH (b)

    图  4  Ti3CNTx和Ti3CNTx/TMAOH的红外光谱

    Figure  4.  Infrared spectra of Ti3CNTx and Ti3CNTx/TMAOH

    图  5  Ti3CNTx和Ti3CNTx/TMAOH的XRD图谱

    Figure  5.  XRD patterns of Ti3CNTx and Ti3CNTx/TMAOH

    d—Interplanar spacing

    图  6  TMAOH用量对吸附剂Ti3CNTx/TMAOH去除Sr2+的影响(插图为产物 Ti3CNTx/TMAOH照片)

    Figure  6.  Effect of TMAOH dosage on Sr2+ removal by adsorbent Ti3CNTx/TMAOH (Inset: Photo of Ti3CNTx/TMAOH)

    图  7  Ti3CNTx和Ti3CNTx/TMAOH对Sr2+的去除效果

    Figure  7.  Removal effect of Ti3CNTx and Ti3CNTx/TMAOH for Sr2+

    图  8  pH值对Ti3CNTx/TMAOH吸附Sr2+的效果 (a) 和Zeta电位 (b) 的影响

    Figure  8.  Effect of pH on Sr2+ adsorption effect (a) and Zeta potential (b) of Ti3CNTx/TMAOH

    Kd—Distribution coefficient; IEP—Isoelectric point

    图  9  共存离子浓度对Ti3CNTx/TMAOH吸附Sr2+去除率的影响

    Figure  9.  Effect of coexisting ion concentration on Sr2+ removal by Ti3CNTx/TMAOH

    图  10  时间t对Ti3CNTx/TMAOH去除Sr2+的影响:(a) 吸附容量;(b) 去除率;(c) 准一级动力学模型;(d) 准二级动力学模型

    Figure  10.  Effect of contact time t on Sr2+ removal by Ti3CNTx/TMAOH: (a) Adsorption capacity; (b) Removal rate; (c) Pseudo-first-order kinetic model; (d) Pseudo-second-order kinetic model

    qt—Adsorption capacity at time t; qe—Adsorption capacity at equilibrium time

    图  11  Ti3CNTx/TMAOH吸附Sr2+的吸附等温线:(a) Langmuir;(b) Freundlich;(c) Redlich-Peterson (R-P) (Ce为平衡状态下Sr2+的质量浓度)

    Figure  11.  Adsorption isotherms for Sr2+ on Ti3CNTx/TMAOH: (a) Langmuir; (b) Freundlich; (c) Redlich-Peterson (R-P) (Ce is the mass concentration of Sr2+ in equilibrium)

    图  12  Ti3CNTx/TMAOH吸附去除Sr2+的lnKCT−1的线性拟合

    Figure  12.  Linear fit of lnKC vs T−1 for adsorption Sr2+ on Ti3CNTx/TMAOH

    KC—Chemical equilibrium constant; T−1—Reciprocal of temperature

    图  13  Ti3CNTx/TMAOH吸附Sr2+的再生实验

    Figure  13.  Regeneration experiment of Ti3CNTx/TMAOH for adsorption Sr2+

    图  14  Ti3CNTx/TMAOH吸附去除Sr2+前后的XPS和FTIR

    Figure  14.  XPS and FTIR spectra before and after adsorption of Ti3CNTx/TMAOH for Sr2+

    图  15  Ti3CNTx/TMAOH吸附Sr2+的机制示意图

    Figure  15.  Mechanism diagram of Sr2+ adsorption by Ti3CNTx/TMAOH

    图  16  不同水环境下Ti3CNTx/TMAOH对Sr2+的去除率

    Figure  16.  Sr2+ removal rate of Ti3CNTx/TMAOH in various water environments

    DIW—De-ionized water; TW—Tap water; LW—Lake water

    表  1  Ti3CNTx和Ti3CNTx/TMAOH的比表面积、孔容和孔径数据

    Table  1.   Surface area, pore volume, and pore diameter of Ti3CNTx and Ti3CNTx/TMAOH

    MaterialSurface
    area/
    (m2·g−1)
    Pore
    volume/
    (cm3·g−1)
    Pore
    diameter/
    nm
    Ti3CNTx1.2150.004438.01
    Ti3CNTx/TMAOH3.1540.002916.13
    下载: 导出CSV

    表  2  Ti3CNTx/TMAOH吸附Sr2+的动力学模型参数

    Table  2.   Parameters of adsorption kinetics model of Sr2+ adsorption on Ti3CNTx/TMAOH

    Kinetic model5.5 mg∙L−110 mg∙L−130 mg∙L−150 mg∙L−1
    Pseudo-first-orderqe/(mg∙g−1)25.0222.8010.498.061
    k1/(10−4 min−1)0.018695.54034.50127.10
    R20.10650.62220.69400.9302
    Pseudo-second-orderqe/(mg∙g−1)4.9888.82924.1629.83
    k2/(g∙mg−1∙min−1)0.15730.084570.010530.00587
    R21.000.99860.99990.9998
    Notes: k1 and k2—Reaction rate constants of pseudo-first-order and pseudo-second-order equations, respectively; R2—Correlation coefficient.
    下载: 导出CSV

    表  3  Ti3CNTx/TMAOH吸附Sr2+的吸附等温线拟合参数

    Table  3.   Fitting parameters of adsorption isotherm for Sr2+ on Ti3CNTx/TMAOH

    T/℃LangmuirFreundlichR-P
    qmax/(mg∙g−1)KL/(L∙mg−1)R2KF/(mg∙g−1)nR2A/(L∙g−1)BgR2
    2025.040.0330.9962.9030.97010.7130.890.999
    3037.470.0360.9743.3720.88611.9160.960.991
    4041.910.0380.9904.9830.91712.5180.990.999
    Notes: T—Reaction temperature; qmax—Maximum adsorption capacity of Langmuir; KL—Langmuir adsorption constant; KF—Freundlich adsorption constant; n—Constant related to the adsorption strength; A and B—Constants related to the adsorption capacity; g—Empirical constant between 0 and 1.
    下载: 导出CSV

    表  4  不同吸附剂对Sr2+的吸附去除效果对比

    Table  4.   Comparison of adsorption and removal effects of different adsorbents for Sr2+

    Adsorbentsqmax/(mg∙g−1)C0/(mg∙L−1)t/minpHRef.
    MnxOy-SbmOn 30.20 4.4 ~30 3.0-9.0 [25]
    ZrO2-MnO2 30.86 100 ~100 4.0-8.0 [26]
    GO 23.83 7.4 6.5-11.0 [27]
    M/GO 9.81 4.0 360 1.7-11.8 [28]
    Commercial AC 7.58 50 8.0-11.0 [29]
    Ti3CNTx/TMAOH 41.91 5.5 ~120 5-11 This study
    Notes: t—Adsorption equilibrium time; GO—Graphene; M—Ge, Sn; AC—Activated carbon.
    下载: 导出CSV

    表  5  Ti3CNTx/TMAOH吸附Sr2+的热力学参数

    Table  5.   Thermodynamic parameter for adsorption Sr2+ on Ti3CNTx/TMAOH

    ΔG/(kJ∙mol−1)ΔH/
    (kJ∙mol−1)
    ΔS/
    (J∙mol−1∙K−1)
    293 K303 K313 K
    −25.34−26.39−27.414.95103.42
    Notes: ΔG—Gibbs free energy change; ΔH—Enthalpy change; ΔS—Entropy change.
    下载: 导出CSV

    表  6  Ti3CNTx/TMAOH在不同水环境下去除Sr2+前后的主要水质参数

    Table  6.   Main water quality parameters before and after Sr2+ removal by Ti3CNTx/TMAOH in different water environments

    pHNa+/
    (mg∙L−1)
    K+/
    (mg∙L−1)
    Mg2+/
    (mg∙L−1)
    Ca2+/
    (mg∙L−1)
    Sr2+/
    (mg∙L−1)
    TW6.238.2303.3829.82345.465.500
    1.0 g∙L−18.1292.9997.77723.381.572
    3.0 g∙L−17.8952.8613.7727.6160.3411
    LW7.1223.239.9844.3398.575.982
    1.0 g∙L−1228.138.0041.3980.693.347
    3.0 g∙L−1216.133.8635.9356.651.885
    下载: 导出CSV
  • [1] LIU F F, ZHOU A G, CHEN J F, et al. Preparation of Ti3C2 and Ti2C MXenes by fluoride salts etching and methane adsorptive properties[J]. Applied Surface Science,2017,416:781-789. doi: 10.1016/j.apsusc.2017.04.239
    [2] 杨挺. 核电站化学废水的处理技术浅析[J]. 科技视界, 2019(1):212-213, 216. doi: 10.19694/j.cnki.issn2095-2457.2019.01.092

    YANG Ting. Treatment technology of chemical wastewater in nuclear power station[J]. Scientific and Technological Horizon,2019(1):212-213, 216(in Chinese). doi: 10.19694/j.cnki.issn2095-2457.2019.01.092
    [3] WANG Y, NIU B, ZHANG X, et al. Review—Ti3C2Tx MXene: An emerging two-dimensional layered material in water treatment[J]. ECS Journal of Solid State Science and Technology,2021,10(4):047002. doi: 10.1149/2162-8777/abf2de
    [4] HE X, JIN S, MIAO L, et al. A 3D hydroxylated MXene/carbon nanotubes composite as scaffold for dendrite-free sodium-metal electrodes[J]. Angewandte Chemie,2020,59(38):16705-16711. doi: 10.1002/anie.202006783
    [5] YAGHOUB M. MXenes and other 2D nanosheets for modification of polyamide thin film nanocomposite membranes for desalination[J]. Separation and Purification Technology,2022,289:120777. doi: 10.1016/j.seppur.2022.120777
    [6] HWANG S K, KANG S M, RETHINASABAPATHY M, et al. MXene: An emerging two-dimensional layered material for removal of radioactive pollutants[J]. Chemical Engineering Journal,2020,397:125428. doi: 10.1016/j.cej.2020.125428
    [7] LU M, HAN W, LI H, et al. There is plenty of space in the MXene layers: The confinement and fillings[J]. Journal of Energy Chemistry,2020,48:344-363. doi: 10.1016/j.jechem.2020.02.032
    [8] IBRAHIM Y, KASSAB A, EID K, et al. Unveiling fabrication and environmental remediation of MXene-based nanoarchitectures in toxic metals removal from wastewater: Strategy and mechanism[J]. Nanomaterials,2020,10(5):885-914. doi: 10.3390/nano10050885
    [9] LI S, WANG L, PENG J, et al. Efficient thorium(IV) removal by two-dimensional Ti2CTx MXene from aqueous solution[J]. Chemical Engineering Journal,2019,366:192-199. doi: 10.1016/j.cej.2019.02.056
    [10] RETHINASABAPATHY M, HWANG K S, KANG S M, et al. Amino-functionalized POSS nanocage-intercalated titanium carbide (Ti3C2Tx) MXene stacks for efficient cesium and strontium radionuclide sequestration[J]. Journal of Hazardous Materials,2021,418:126315. doi: 10.1016/j.jhazmat.2021.126315
    [11] WANG L, TAO W, YUAN L, et al. Rational control of the interlayer space inside two-dimensional titanium carbides for highly efficient uranium removal and imprisonment[J]. Chemical Communications,2017,53(89):12084-12087. doi: 10.1039/C7CC06740B
    [12] ZHANG Z G, GU P, ZHANG M D, et al. Synthesis of a robust layered metal sulfide for rapid and effective removal of Sr2+ from aqueous solutions[J]. Chemical Engineering Journal,2019,372:1205-1215. doi: 10.1016/j.cej.2019.04.193
    [13] QADA E, ALLEN S J, WALKER G M. Adsorption of basic dyes from aqueous solution onto activated carbons[J]. Chemical Engineering Journal,2008,135(3):174-184. doi: 10.1016/j.cej.2007.02.023
    [14] YU B, YUEN A, XU X, et al. Engineering MXene surface with POSS for reducing fire hazards of polystyrene with enhanced thermal stability[J]. Journal of Hazardous Materials,2021,401:123342. doi: 10.1016/j.jhazmat.2020.123342
    [15] DENG S B, BAI R B. Aminated polyacrylonitrile fibers for humic acid adsorption: Behaviors and mechanisms[J]. Environmental Science & Technology,2003,37(24):5799-5805.
    [16] 吴刚. 材料结构表征及应用[M]. 北京: 化学工业出版社, 2001: 15-21.

    WU Gang. Characterization and application of material structure[M]. Beijing: Chemical Industry Press, 2001: 15-21(in Chinese).
    [17] LIN H, CHEN L, LU X, et al. Two-dimensional titanium carbide MXenes as efficient non-noble metal electrocatalysts for oxygen reduction reaction[J]. Science China Materials,2019,62(5):662-670. doi: 10.1007/s40843-018-9378-3
    [18] XU G, WANG X, GONG S, et al. Solvent-regulated preparation of well-intercalated Ti3C2Tx MXene nanosheets and application for highly effective electromagnetic wave absorption[J]. Nanotechnology,2018,29(35):355201. doi: 10.1088/1361-6528/aac8f6
    [19] QIAN A, HYEON S E, SEO J Y, et al. Capacitance changes associated with cation-transport in free-standing flexible Ti3C2Tx (T—O, F, OH) MXene film electrodes[J]. Electrochimica Acta,2018,266:86-93. doi: 10.1016/j.electacta.2018.02.019
    [20] DU F, TANG H, PAN L M, et al. Environmental friendly scalable production of colloidal 2D titanium carbonitride MXene with minimized nanosheets restacking for excellent cycle life lithium-ion batteries[J]. Electrochimica Acta,2017,235:690-699. doi: 10.1016/j.electacta.2017.03.153
    [21] ZHANG M D, GU P, YAN S, et al. Na/Zn/Sn/S (NaZTS): Quaternary metal sulfide nanosheets for efficient adsorption of radioactive strontium ions[J]. Chemical Engineering Journal,2020,379:122227. doi: 10.1016/j.cej.2019.122227
    [22] SHAHZAD A, OH J M, RASOOL K, et al. Strontium ions capturing in aqueous media using exfoliated titanium aluminum carbide (Ti2AlC MAX phase)[J]. Journal of Nuclear Materials,2021,549:152916. doi: 10.1016/j.jnucmat.2021.152916
    [23] MU W J, DU S Z, YU Q H, et al. Improving barium ion adsorption on two-dimensional titanium carbide by surface modification[J]. Dalton Transactions,2018,47(25):8375-8381. doi: 10.1039/C8DT00917A
    [24] SHAHZAD A, NAWAZ M, MOZTAHIDA M, et al. Ti3C2Tx MXene core-shell spheres for ultrahigh removal of mercuric ions[J]. Chemical Engineering Journal,2019,368:400-408. doi: 10.1016/j.cej.2019.02.160
    [25] ZHANG L, WEI J Y, ZHAO X, et al. Removal of strontium(II) and cobalt(II) from acidic solution by manganese antimonate[J]. Chemical Engineering Journal,2016,302:733-743. doi: 10.1016/j.cej.2016.05.040
    [26] WHITE D A, LABAYRU R. Synthesis of a manganese dioxide-silica hydrous composite and its properties as a sorption material for strontium[J]. Industrial and Engineering Chemistry Research,1991,30(1):207-210. doi: 10.1021/ie00049a031
    [27] WEN T, WU X L, LIU M C, et al. Efficient capture of strontium from aqueous solutions using graphene oxide-hydroxyapatite nanocomposites[J]. Dalton Transactions,2014,43(20):7464-7472. doi: 10.1039/c3dt53591f
    [28] DING N, KANATZIDIS M G. Selective incarceration of caesium ions by Venus flytrap action of a flexible framework sulfide[J]. Nature Chemistry,2010,2(3):187-191. doi: 10.1038/nchem.519
    [29] MENG R, CHEN T, ZHANG Y, et al. Development, modification, and application of low-cost and available biochar derived from corn straw for the removal of vanadium (V) from aqueous solution and real contaminated groundwater[J]. RSC Advances,2018,8(38):21480-21494. doi: 10.1039/C8RA02172D
    [30] DENG S B, YU G, XIE S H, et al. Enhanced adsorption of arsenate on the aminated fibers: Sorption behavior and uptake mechanism[J]. Langmuir,2008,24(19):10961-10967. doi: 10.1021/la8023138
    [31] FARD A K, MCKAY G, CHAMOUN R, et al. Barium removal from synthetic natural and produced water using MXene as two dimensional (2-D) nanosheet adsorbent[J]. Chemical Engineering Journal,2017,317:331-342. doi: 10.1016/j.cej.2017.02.090
    [32] XU F J, WANG Z H, YANG W T. Surface functionalization of polycaprolactone films via surface-initiated atom transfer radical polymerization for covalently coupling cell-adhesive biomolecules[J]. Biomaterials,2010,31(12):3139-3147. doi: 10.1016/j.biomaterials.2010.01.032
    [33] DENG S, ZHENG Y Q, XU F J, et al. Highly efficient sorption of perfluorooctane sulfonate and perfluorooctanoate on a quaternized cotton prepared by atom transfer radical polymerization[J]. Chemical Engineering Journal,2012,193-194:154-160. doi: 10.1016/j.cej.2012.04.005
    [34] ZHANG G, WANG T, XU Z, et al. Synthesis of amino-functionalized Ti3C2Tx MXene by alkalization-grafting modification for efficient lead adsorption[J]. Chemical Communications,2020,56(76):11283-11286. doi: 10.1039/D0CC04265J
    [35] CHENG Z, ZHU X, SHI Z L, et al. Polymer microspheres with permanent antibacterial surface from surface-initiated atom transfer radical polymerization[J]. Industrial & Engineering Chemistry Research,2005,44(18):7098-7104.
    [36] ZHANG P, WANG L, HUANG Z, et al. Aryl diazonium-assisted amidoximation of MXene for boosting water stability and uranyl sequestration via electrochemical sorption[J]. ACS Applied Materials & Interfaces,2020,12(13):15579-15587.
    [37] CHEN S, XIANG Y, BANKS M K, et al. Polyoxometalate-coupled MXene nanohybrid via poly(ionic liquid) linkers and its electrode for enhanced supercapacitive performance[J]. Nanoscale,2018,10(42):20043-20052. doi: 10.1039/C8NR05760E
    [38] KIM S J, KOH H J, REN C E, et al. Metallic Ti3C2Tx MXene gas sensors with ultrahigh signal-to-noise ratio[J]. ACS Nano,2018,12(2):986-993. doi: 10.1021/acsnano.7b07460
    [39] WANG H, CUI H, SONG X, et al. Facile synthesis of heterojunction of MXenes/TiO2 nanoparticles towards enhanced hexavalent chromium removal[J]. Journal of Colloid and Interface Science,2020,561:46-57. doi: 10.1016/j.jcis.2019.11.120
  • 加载中
图(16) / 表(6)
计量
  • 文章访问数:  667
  • HTML全文浏览量:  285
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-21
  • 修回日期:  2022-11-29
  • 录用日期:  2022-12-10
  • 网络出版日期:  2022-12-26
  • 刊出日期:  2023-10-15

目录

    /

    返回文章
    返回