留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

MXene改性材料的制备及其吸附除Sr2+性能

张鹏丽 武莉娅 杨宗政 吴志国 曹井国

张鹏丽, 武莉娅, 杨宗政, 等. MXene改性材料的制备及其吸附除Sr2+性能[J]. 复合材料学报, 2022, 41(0): 1-14
引用本文: 张鹏丽, 武莉娅, 杨宗政, 等. MXene改性材料的制备及其吸附除Sr2+性能[J]. 复合材料学报, 2022, 41(0): 1-14
Pengli ZHANG, Liya WU, Zongzheng YANG, Zhiguo WU, Jingguo CAO. Preparation of modified MXene material and its adsorption performance for Sr2+[J]. Acta Materiae Compositae Sinica.
Citation: Pengli ZHANG, Liya WU, Zongzheng YANG, Zhiguo WU, Jingguo CAO. Preparation of modified MXene material and its adsorption performance for Sr2+[J]. Acta Materiae Compositae Sinica.

MXene改性材料的制备及其吸附除Sr2+性能

基金项目: 天津市卤水化工与资源生态化利用重点实验室开放基金资助项目(BCERE201902);国家科技重大项目子项目(2017 ZX07107-001);天津市教委科研计划项目(自然科学)(2019 KJ225)
详细信息
    通讯作者:

    曹井国,博士,副教授,硕士生导师,研究方向为水污染防治技术 E-mail:cjg@tust.edu.cn

  • 中图分类号: O647.33

Preparation of modified MXene material and its adsorption performance for Sr2+

Funds: The Foundation of Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization (No. BCERE201902); Sub project of National Science and Technology Major Projects (No. 2017 ZX07107-001); Scientific Research Program of Tianjin Municipal Education Commission (Natural Science) (No. 2019 KJ225)
  • 摘要:   目的  本文选择以四元TiAlCN MAX为原相,对多层TiCNT MXene进行改性制备处理,并评估其对模拟放射性废水中Sr的吸附性能。  方法  借助有机小分子四甲基氢氧化铵(TMAOH)作插层剂,对多层TiCNT MXene进行改性制备处理,优化产物TiCNT/TMAOH的合成条件,并采用SEM-EDS、XRD、BET和FTIR等对改性前后的样品进行表征分析。  结果  复合材料TiCNT/TMAOH及其对模拟废水中Sr的吸附性能体现在①插层剂TMAOH将多层TiCNT的层间距由1.22 nm增大到1.48 nm,比表面积提高到3.154 m·g,同时提高了材料表面的氧官能团含量;②改性后的TiCNT/TMAOH对Sr的吸附去除率由原来的56.38%提高到99.78%,且可在弱酸性和碱性条件下(5~11)有效吸附除Sr;③在Na和K的质量浓度为500 mg∙L,具有较强的抗干扰能力,对Sr的去除率为64.54%~75.44%,竞争离子的抑制顺序为CaMgKNaCs;④ TiCNT/TMAOH在吸附除Sr中具有超快动力学(10 min,去除率为99.28%),吸附过程符合准二级动力学模型(1.00≥≥0.9986),化学吸附是主要的速控步骤;⑤吸附等温线符合R-P(0.999≥≥0.991)模型,产生吸附效果的动态点位于特定的位置,升温有利于吸附过程的进行;⑥经过四次的循环再生后,对Sr的去除率为69.56%,具有一定的再生性能;⑦在以自来水和湖水为背景配制的模拟含Sr废水中,可分别去除93.80%和68.49%的Sr;⑧TiCNT/TMAOH对Sr的吸附机制可能包括以下个方面:1)-N=与Sr、C-N与Sr、Ti-N与Sr、Ti-F与Sr以及Ti-O与Sr之间的螯合作用;2)负的表面电荷与Sr之间的静电作用;3)Ti-OH上的H与Sr之间的离子交换作用;4)层间截留作用。  结论  插层剂TMAOH的引入,使得改性后的多层TiCNT/TMAOH能够有效去除模拟废水中的Sr,在pH为6,温度为313 K时,对Sr的最大吸附容量为41.91 mg∙g,其吸附容量有待进一步提高。

     

  • 图  1  Ti3CNTx插层改性前表面(a)和断面(c),以及改性后表面(b)和断面(d)的SEM图

    Figure  1.  SEM of surface (a) and cross section (c) before Ti3CNTx modification, and surface (b) and cross section (d) after modification

    图  2  Ti3CNTx(a)和Ti3CNTx/TMAOH(b)的N2吸脱附及孔径图

    Figure  2.  N2 adsorption-desorption and pore size of Ti3CNTx (a) and Ti3CNTx/TMAOH (b)

    图  3  Ti3CNTx(a)和Ti3CNTx/TMAOH(b)的EDS光谱

    Figure  3.  EDS spectra of Ti3CNTx (a) and Ti3CNTx/TMAOH (b)

    图  4  Ti3CNTx和Ti3CNTx/TMAOH的红外光谱

    Figure  4.  Infrared spectra of Ti3CNTx and Ti3CNTx/TMAOH

    图  5  Ti3CNTx和Ti3CNTx/TMAOH的XRD光谱

    Figure  5.  XRD spectra of Ti3CNTx and Ti3CNTx/TMAOH

    图  6  TMAOH用量对吸附剂Ti3CNTx/TMAOH去除Sr2+的影响

    Figure  6.  The effect of TMAOH dosage on Sr2+ removal by adsorbent Ti3CNTx/TMAOH

    图  7  Ti3CNTx和Ti3CNTx/TMAOH对Sr2+的去除效果

    Figure  7.  The removal effect of Ti3CNTx and Ti3CNTx/TMAOH for Sr2+

    图  8  pH值对Ti3CNTx/TMAOH吸附Sr2+的效果(a)和zeta电位(b)的影响

    Figure  8.  The effect of pH on Sr2+ adsorption effect (a) and zeta potential (b) of Ti3CNTx/TMAOH

    图  9  共存离子浓度对Ti3CNTx/TMAOH吸附Sr2+去除率的影响

    Figure  9.  The effect of coexisting ion concentration on Sr2+ removal by Ti3CNTx/TMAOH

    图  10  时间对Ti3CNTx/TMAOH去除Sr2+: (a)吸附容量和(b)去除率的影响; (c)拟一级和(d)拟二级动力学模型

    Figure  10.  The effect of contact time on Sr2+: (a) adsorption capacity and (b) removal rate of Ti3CNTx/TMAOH; (c) Pseudo-first-order and (d) pseudo-second-order kinetic model

    图  11  Ti3CNTx/TMAOH吸附Sr2+:(a)Langmuir、(b)Freundlich和(c)R-P吸附等温线(Ce为平衡状态下Sr2+的质量浓度)

    Figure  11.  Adsorption isotherms for Sr2+ : (a) Langmuir, (b) Freundlich, and (c) R-P on Ti3CNTx/TMAOH (Ce is the mass concentration of Sr2+ in equilibrium)

    图  12  Ti3CNTx/TMAOH吸附去除Sr2+的lnKC与T−1的线性拟合

    Figure  12.  Linear fit of lnKC vs T−1 for adsorption Sr2+ on Ti3CNTx/TMAOH

    图  13  Ti3CNTx/TMAOH吸附Sr2+的的再生实验

    Figure  13.  Regeneration experiment of Ti3CNTx/TMAOH for adsorption Sr2+

    图  14  Ti3CNTx/TMAOH吸附去除Sr2+前后的XPS和FTIR

    Figure  14.  XPS and FTIR before and after adsorption of Ti3CNTx/TMAOH for Sr2+

    图  15  Ti3CNTx/TMAOH吸附Sr2+的机制图

    Figure  15.  Mechanism diagram of Sr2+ adsorption by Ti3CNTx/TMAOH

    图  16  不同水环境下Ti3CNTx/TMAOH对Sr2+的去除率

    Figure  16.  Sr2+ removal rate of Ti3CNTx/TMAOH in various water environments

    表  1  Ti3CNTx和Ti3CNTx/TMAOH的比表面积、孔容和孔径数据

    Table  1.   The surface area, pore volume, and pore diameter of Ti3CNTx and Ti3CNTx/TMAOH

    MaterialSurface
    area/
    (m2·g−1)
    Pore
    volume/
    (cm3·g1)
    Pore
    diameter/
    nm
    Ti3CNTx1.2150.004438.01
    Ti3CNTx/TMAOH3.1540.002916.13
    下载: 导出CSV

    表  2  Ti3CNTx/TMAOH吸附Sr2+的动力学模型参数

    Table  2.   The parameters of adsorption kinetics model of Sr2+ adsorption on Ti3CNTx/TMAOH

    kinetic model5.5/(mg∙L−1)10/(mg∙L−1)30/(mg∙L−1)50/(mg∙L−1)
    Pseudo-first-orderqe/(mg∙g−1)25.0222.8010.498.061
    k1×10−4/(min−1)0.018695.54034.50127.10
    R20.10650.62220.69400.9302
    Pseudo-second-orderqe/(mg∙g−1)4.9888.82924.1629.83
    k2/(g∙mg−1∙min−1)0.15730.084570.010530.00587
    R21.000.99860.99990.9998
    Notes: qe is the adsorption capacity at equilibrium time; k1 and k2 are reaction rate constants of pseudo-first-order and pseudo-second-order equations, respectively; R2 is the correlation coefficient.
    下载: 导出CSV

    表  3  Ti3CNTx/TMAOH吸附Sr2+的吸附等温线拟合参数

    Table  3.   Fitting parameters of adsorption isotherm for Sr2+ on Ti3CNTx/TMAOH

    t/℃LangmuirFreundlichR-P
    qmax/(mg∙g−1)KL/(L∙mg−1)R2KF/(mg∙g−1)nR2A/(L∙g−1)BgR2
    2025.040.0330.9962.9030.97010.7130.890.999
    3037.470.0360.9743.3720.88611.9160.960.991
    4041.910.0380.9904.9830.91712.5180.990.999
    Notes: t is the reaction temperature; qmax represents the maximum adsorption capacity of Langmuir; KL is Langmuir adsorption constant; KF is the Freundlich adsorption constant, and n is the constant related to the adsorption strength; A and B are constants related to the adsorption capacity, and the index g is an empirical constant between 0 and 1.
    下载: 导出CSV

    表  4  不同吸附剂对Sr2+的吸附去除效果对比

    Table  4.   Comparison of adsorption and removal effects of different adsorbents for Sr2+

    Adsorbentsqmax/(mg∙g−1)C0/(mg∙L−1)t/minpHReferences
    MnxOy-SbmOn30.204.4~303.0-9.0[25]
    ZrO2-MnO230.86100~1004.0-8.0[26]
    GO23.837.46.5-11.0[27]
    M/GO9.814.03601.7-11.8[28]
    Commercial AC7.58508.0-11.0[29]
    Ti3CNTx/TMAOH41.915.5~1205-11This study
    Notes: C0 is the initial Sr2+ concentration of, t is the adsorption equilibrium time.
    下载: 导出CSV

    表  5  Ti3CNTx/TMAOH吸附Sr2+的热力学参数Table 5 Thermodynamic parameter for adsorption Sr2+ on Ti3CNTx/TMAOH

    ΔG/(kJ∙mol−1)ΔH/
    (kJ∙mol−1)
    ΔS/
    (J∙K−1∙mol−1)
    293 K303 K313 K
    −25.34−26.39−27.414.95103.42
    Notes: ΔG is Gibbs free energy change; ΔH is enthalpy change; ΔS is entropy change.
    下载: 导出CSV

    表  6  Ti3CNTx/TMAOH在不同水环境下去除Sr2+前后的主要水质参数

    Table  6.   The main water quality parameters after Sr2+ removal by Ti3CNTx/TMAOH in different water environments

    pHNa+/
    (mg∙L−1)
    K+/
    (mg∙L−1)
    Mg2+/
    (mg∙L−1)
    Ca2+/
    (mg∙L−1)
    Sr2+/
    (mg∙L−1)
    TW6.238.2303.3829.82345.465.500
    1.0/(g∙L−1)8.1292.9997.77723.381.572
    3.0/(g∙L−1)7.8952.8613.7727.6160.3411
    LW7.1223.239.9844.3398.575.982
    1.0/(g∙L−1)228.138.0041.3980.693.347
    3.0/(g∙L−1)216.133.8635.9356.651.885
    Notes: TW and LW represent tap water and lake water, respectively.
    下载: 导出CSV
  • [1] LIU F F, ZHOU A G, CHEN J F, et al. Preparation of Ti3C2 and Ti2C MXenes by fluoride salts etching and methane adsorptive properties[J]. Applied Surface Science,2017,416:781-789. doi: 10.1016/j.apsusc.2017.04.239
    [2] 杨挺. 核电站化学废水的处理技术浅析[J]. 科技视界, 2019, 259(1):217-218. doi: 10.19694/j.cnki.issn2095-2457.2019.01.092

    YANG Ting. Treatment technology of chemical wastewater in nuclear power station[J]. Scientific and technological horizon,2019,259(1):217-218(in Chinese). doi: 10.19694/j.cnki.issn2095-2457.2019.01.092
    [3] WANG Y, NIU B, ZHANG X, et al. Review—Ti3C2Tx MXene: an emerging two-dimensional layered material in water treatment[J]. ECS Journal of Solid State Science and Technology,2021,10(4):047002-047016. doi: 10.1149/2162-8777/abf2de
    [4] HE X, JIN S, MIAO L, et al. 3 D hydroxylated MXene/carbon nanotubes composite as scaffold for dendrite-free sodium-metal electrodes[J]. Angewandte Chemie,2020,132(38):16848-16854.
    [5] YAGHOUB M. MXenes and other 2 D nanosheets for modification of polyamide thin film nanocomposite membranes for desalination[J]. Separation and Purification Technology,2022,289:120777-120782. doi: 10.1016/j.seppur.2022.120777
    [6] HWANG S K, KANG S M, RETHINASABAPATHY M, et al. MXene: An emerging two-dimensional layered material for removal of radioactive pollutants[J]. Chemical Engineering Journal,2020,397:125428. doi: 10.1016/j.cej.2020.125428
    [7] LU M, HAN W, LI H, et al. There is plenty of space in the MXene layers: the confinement and fillings[J]. Journal of Energy Chemistry,2020,48:344-363. doi: 10.1016/j.jechem.2020.02.032
    [8] IBRAHIM Y, KASSAB A, EID K, et al. Unveiling fabrication and environmental remediation of MXene-Based nanoarchitectures in toxic metals removal from wastewater: strategy and mechanism[J]. Nanomaterials,2020,10(5):885-914. doi: 10.3390/nano10050885
    [9] LI S, WANG L, PENG J, et al. Efficient thorium(IV) removal by two-dimensional Ti2CTx MXene from aqueous solution[J]. Chemical Engineering Journal,2019,366:192-199. doi: 10.1016/j.cej.2019.02.056
    [10] RETHINASABAPATHY M, HWANG K S, KANG S M, et al. Amino-functionalized POSS nanocage-intercalated Titanium Carbide(Ti3C2Tx) MXene stacks for efficient cesium and strontium radionuclide sequestration[J]. Journal of Hazardous Materials,2021,418:126315-126320. doi: 10.1016/j.jhazmat.2021.126315
    [11] WANG L, TAO W, YUAN L, et al. Rational control of the interlayer space inside two-dimensional titanium carbides for highly efficient uranium removal and imprisonment[J]. Chemical Communications,2017,53(89):12084-12087. doi: 10.1039/C7CC06740B
    [12] ZHANG Z G, GU P, ZHANG M D, et al. Synthesis of a robust layered metal sulfide for rapid and effective removal of Sr2+ from aqueous solutions[J]. Chemical Engineering Journal,2019,372:1205-1215. doi: 10.1016/j.cej.2019.04.193
    [13] QADA E, ALLEN S J, WALKER G M. Adsorption of basic dyes from aqueous solution onto activated carbons[J]. Chemical Engineering Journal,2008,135(3):174-184. doi: 10.1016/j.cej.2007.02.023
    [14] YU B, YUEN A, XU X, et al. Engineering MXene surface with POSS for reducing fire hazards of polystyrene with enhanced thermal stability[J]. Journal of Hazardous Materials,2020,401:123342.
    [15] DENG S B, BAI R B. Aminated polyacrylonitrile fibers for humic acid adsorption: behaviors and mechanisms[J]. Environmental Science & Technology,2003,37(24):5799-5805.
    [16] 吴刚. 材料结构表征及应用[J]. 北京:化学工业出版社, 2001:15-21.

    WU Gang. Characterization and application of material structure[J]. Beijing:Chemical Industry Press,2001:15-21(in Chinese).
    [17] LIN H, CHEN L, LU X, et al. Two-dimensional titanium carbide MXenes as efficient non-noble metal electrocatalysts for oxygen reduction reaction[J]. Science China Materials,2018,62(5):662-670.
    [18] XU G, WANG X, GONG S, et al. Solvent-regulated preparation of well-intercalated Ti3C2Tx MXene nanosheets and application for highly effective electromagnetic wave absorption[J]. Nanotechnology,2018,29(35):355201. doi: 10.1088/1361-6528/aac8f6
    [19] QIAN A, HYEON S E, SEO J Y, et al. Capacitance changes associated with cation-transport in free-standing flexible Ti3C2Tx (T-O, F, OH) MXene film electrodes[J]. Electrochimica Acta,2018,266:86-93. doi: 10.1016/j.electacta.2018.02.019
    [20] DU F, TANG H, PAN L, et al. Environmental friendly scalable production of colloidal 2 D Titanium Carbonitride MXene with minimized nanosheets restacking for excellent cycle life lithium-ion batteries[J]. Electrochimica Acta,2017,235(3):690-699.
    [21] ZHANG M, GU P, YAN S, et al. Na/Zn/Sn/S (NaZTS): Quaternary metal sulfide nanosheets for efficient adsorption of radioactive strontium ions[J]. Chemical Engineering Journal,2020,379:122227-122236. doi: 10.1016/j.cej.2019.122227
    [22] SHAHZAD A, OH J M, RASOOL K, et al. Strontium ions capturing in aqueous media using exfoliated titanium aluminum carbide (Ti2AlC MAX phase)[J]. Journal of Nuclear Materials,2021,549:152916-152924. doi: 10.1016/j.jnucmat.2021.152916
    [23] MU W, DU S, YU Q, et al. Improving barium ions adsorption on two-dimensional titanium carbide by surface modification[J]. Dalton Transactions,2018,47(25):8375-8381. doi: 10.1039/C8DT00917A
    [24] SHAHZAD A, NAWAZ M, MOZTAHIDA M, et al. Ti3C2Tx MXene core-shell spheres for ultrahigh removal of mercuric ions[J]. Chemical Engineering Journal,2019,368:400-408. doi: 10.1016/j.cej.2019.02.160
    [25] ZHANG L, WEI J Y, ZHAO X, et al. Removal of strontium (II) and cobalt (II) from acidic solution by manganese antimonate[J]. Chemical Engineering Journal,2016,302:733-743. doi: 10.1016/j.cej.2016.05.040
    [26] WHITE D A, LABAYRU R. Synthesis of a manganese dioxide-silica hydrous composite and its properties as a sorption material for strontium[J]. Industrial and Engineering Chemistry Research,1991,30(1):207-210. doi: 10.1021/ie00049a031
    [27] WEN T, WU X L, LIU M C, et al. Efficient capture of strontium from aqueous solutions using graphene oxide-hydroxyapatite nanocomposites[J]. Dalton Transactions,2014,43(20):7464-7472. doi: 10.1039/c3dt53591f
    [28] DING N, KANATZIDIS M G. Selective incarceration of cesium ions by venus flytrap action of a flexible framework sulfide[J]. Nature Chemistry,2010,2(3):187-191. doi: 10.1038/nchem.519
    [29] MENG R, CHEN T, ZHANG Y, et al. Development, modification, and application of low-cost and available biochar derived from corn straw for the removal of vanadium (V) from aqueous solution and real contaminated groundwater[J]. RSC Advances,2018,8(38):21480-21494. doi: 10.1039/C8RA02172D
    [30] DENG S B, YU G, XIE S H, et al. Enhanced adsorption of arsenate on the aminated fibers: sorption behavior and uptake mechanism[J]. Langmuir,2008,24(19):10961-10967. doi: 10.1021/la8023138
    [31] FARD A K, MCKAY G, CHAMOUN R, et al. Barium removal from synthetic natural and produced water using MXene as two dimensional(2-D) Nanosheet Adsorbent[J]. Chemical Engineering Journal,2017,317:331-342. doi: 10.1016/j.cej.2017.02.090
    [32] XU F J, WANG Z H, YANG W T. Surface functionalization of polycaprolactone films via surface-initiated atom transfer radical polymerization for covalently coupling cell-adhesive biomolecules[J]. Biomaterials,2010,31(12):3139-3147. doi: 10.1016/j.biomaterials.2010.01.032
    [33] DENG S, ZHENG Y Q, XU F J, et al. Highly efficient sorption of perfluorooctane sulfonate and perfluorooctanoate on a quaternized cotton prepared by atom transfer radical polymerization[J]. Chemical Engineering Journal,2012,193-194:154-160. doi: 10.1016/j.cej.2012.04.005
    [34] ZHANG G, WANG T, XU Z, et al. Synthesis of amino-functionalized Ti3C2Tx MXene by alkalization-grafting modification for efficient lead adsorption[J]. Chemical Communications,2020,56(76):11283-11286. doi: 10.1039/D0CC04265J
    [35] CHENG Z, ZHU X, SHI Z L, et al. Polymer microspheres with permanent antibacterial surface from surface-initiated atom transfer radical polymerization[J]. Industrial & Engineering Chemistry Research,2005,44(18):7098-7104.
    [36] ZHANG P, WANG L, HUANG Z, et al. Aryl diazonium-assisted amidoximation of MXene for boosting water stability and uranyl sequestration via electrochemical sorption[J]. ACS Applied Materials & Interfaces,2020,12(13):15579-15587.
    [37] SHU C, XIANG Y, BANKS M K, et al. Polyoxometalate-coupled MXene nanohybridviapoly (ionic liquid) linkers and its electrode for enhanced supercapacitive performance[J]. Nanoscale,2018,10(42):20043-20052. doi: 10.1039/C8NR05760E
    [38] KIM S J, KOH H J, REN C E, et al. Metallic Ti3C2Tx MXene gas sensors with ultrahigh signal-to-noise ratio[J]. ACS Nano,2018,12(2):986-993. doi: 10.1021/acsnano.7b07460
    [39] WANG H, CUI H, SONG X, et al. Facile synthesis of heterojunction of MXenes/TiO2 nanoparticles towards enhanced hexavalent chromium removal[J]. Journal of Colloid and Interface Science,2019,561:46-57.
  • 加载中
计量
  • 文章访问数:  188
  • HTML全文浏览量:  90
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-21
  • 修回日期:  2022-11-29
  • 录用日期:  2022-12-10
  • 网络出版日期:  2022-12-27

目录

    /

    返回文章
    返回