留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

BN和Al2O3@BaTiO3纤维协同改性聚偏氟乙烯复合材料的介电与导热性能

杨萌 邓伟 李婉玉 孟令欣 胡思远

杨萌, 邓伟, 李婉玉, 等. BN和Al2O3@BaTiO3纤维协同改性聚偏氟乙烯复合材料的介电与导热性能[J]. 复合材料学报, 2023, 40(6): 3312-3321. doi: 10.13801/j.cnki.fhclxb.20220824.002
引用本文: 杨萌, 邓伟, 李婉玉, 等. BN和Al2O3@BaTiO3纤维协同改性聚偏氟乙烯复合材料的介电与导热性能[J]. 复合材料学报, 2023, 40(6): 3312-3321. doi: 10.13801/j.cnki.fhclxb.20220824.002
YANG Meng, DENG Wei, LI Wanyu, et al. Dielectric property and thermal conductivity of polyvinylidene fluoride composites modified by BN and Al2O3@BaTiO3 fibers[J]. Acta Materiae Compositae Sinica, 2023, 40(6): 3312-3321. doi: 10.13801/j.cnki.fhclxb.20220824.002
Citation: YANG Meng, DENG Wei, LI Wanyu, et al. Dielectric property and thermal conductivity of polyvinylidene fluoride composites modified by BN and Al2O3@BaTiO3 fibers[J]. Acta Materiae Compositae Sinica, 2023, 40(6): 3312-3321. doi: 10.13801/j.cnki.fhclxb.20220824.002

BN和Al2O3@BaTiO3纤维协同改性聚偏氟乙烯复合材料的介电与导热性能

doi: 10.13801/j.cnki.fhclxb.20220824.002
基金项目: 黑龙江省自然科学基金(LH2019E059)
详细信息
    通讯作者:

    邓伟,博士,副教授,硕士生导师,研究方向为聚合物基复合电介质材料 E-mail:weideng@hrbust.edu.cn

  • 中图分类号: TM215.92;TB332

Dielectric property and thermal conductivity of polyvinylidene fluoride composites modified by BN and Al2O3@BaTiO3 fibers

Funds: Natural Science Foundation of Heilongjiang Province (LH2019 E059)
  • 摘要: 对于介电储能材料,兼具高介电、高击穿和高导热的研究备受关注。本文采用高温煅烧制备羟基化氮化硼纳米片(BN)和静电纺丝制备负载氧化铝的钛酸钡纤维(Al2O3@BaTiO3),共同填充聚偏氟乙烯(PVDF)并流延热压获得复合材料,研究了BN和Al2O3@BaTiO3协同作用对PVDF基复合材料结构和性能的影响。结果表明,Al2O3@BaTiO3纤维能够桥接BN纳米片,使复合填充的BN-Al2O3@BaTiO3/PVDF材料表现出优于纯PVDF和BN/PVDF的力学、介电及导热性能。随着Al2O3@BaTiO3纤维含量增加,BN-Al2O3@BaTiO3/PVDF材料的介电常数和导热系数增大,拉伸强度和击穿场强先增大后减小。当Al2O3@BaTiO3含量为5wt%时,BN-Al2O3@BaTiO3/PVDF复合材料的击穿场强最大达到253.9 kV/mm,是纯PVDF的2.43倍;此时拉伸强度、介电常数(1 kHz)和导热系数也提升至41.23 MPa、12.1和0.508 W/(m·K),较纯PVDF分别提高了10.8%、44.0%和185.4%。

     

  • 图  1  Al2O3@BaTiO3纤维 (a) 和BN-Al2O3@BaTiO3/聚偏氟乙烯(PVDF) (b) 复合材料的制备过程示意图

    Figure  1.  Schematic diagrams of preparation process of Al2O3@BaTiO3 fibers (a) and BN-Al2O3@BaTiO3/polyvinylidene fluoride (PVDF) composites (b)

    图  2  静电纺Al2O3@BaTiO3纤维前驱体 (a) 和Al2O3@BaTiO3纤维 (b) 的SEM图像(内嵌直径分布);Al (c) 和Ba (d) 的EDS分布图

    Figure  2.  SEM images with insert diameter distribution of as-electrospun Al2O3@BaTiO3 fibers (a) and Al2O3@BaTiO3 fibers (b); EDS mapping images of Al (c) and Ba (d)

    D—Average diameter

    图  3  h-BN (a) 和BN (b) 的SEM图像;h-BN ((a'), (a'')) 和BN ((b'), (b'')) 静置24 h前后的水分散液数码照片

    Figure  3.  SEM images of h-BN (a) and BN (b); Digital photographs of h-BN ((a'), (a'')) and BN ((b'), (b'')) aqueous dispersion before and after standing for 24 h

    图  4  Al2O3颗粒、静电纺Al2O3@BaTiO3纤维前驱体、Al2O3@BaTiO3纤维、h-BN和BN纳米片的FTIR图谱

    Figure  4.  FTIR spectra of Al2O3, as-electrospun Al2O3@BaTiO3 fibers, Al2O3@BaTiO3 fibers, h-BN and BN nanosheets

    图  5  不同Al2O3@BaTiO3含量的BN-Al2O3@BaTiO3/PVDF复合材料的断面SEM图像:(a) 0wt%;(b) 5wt%;(c) 10wt%;(d) 15wt%;(e) 20wt%

    Figure  5.  Cross-sectional SEM images of BN-Al2O3@BaTiO3/PVDF composites with different content of Al2O3@BaTiO3: (a) 0wt%; (b) 5wt%; (c) 10wt%; (d) 15wt%; (e) 20wt%

    图  6  BN-Al2O3@BaTiO3/PVDF复合材料的XRD图谱

    Figure  6.  XRD patterns of BN-Al2O3@BaTiO3/PVDF composites

    图  7  BN-Al2O3@BaTiO3/PVDF复合材料的应力-应变曲线

    Figure  7.  Stress-strain curves of BN-Al2O3@BaTiO3/PVDF composites

    图  8  BN-Al2O3@BaTiO3/PVDF复合材料的介电常数 (a)、介电损耗 (b) 和电导率 (c)

    Figure  8.  Dielectric constant (a), dielectric loss (b) and conductivity (c) of BN-Al2O3@BaTiO3/PVDF composites

    图  9  BN-Al2O3@BaTiO3/PVDF复合材料的Weibull击穿强度分布图 (a) 和击穿机制示意图 (b)

    Figure  9.  Weibull breakdown strength distribution (a) and breakdown mechanism diagram (b) of BN-Al2O3@BaTiO3/PVDF composites

    图  10  BN-Al2O3@BaTiO3/PVDF复合材料的热导率 (a) 和热导率增长因子(TCEF) (b)

    Figure  10.  Thermal conductivity (a) and thermal conductivity enhancement factor (TCEF) (b) of BN-Al2O3@BaTiO3/PVDF composites

    表  1  BN-Al2O3@BaTiO3/PVDF复合材料的命名

    Table  1.   Naming of BN-Al2O3@BaTiO3/PVDF composite

    Sample BN/wt% Al2O3@BaTiO3/wt%
    BN/PVDF 5 0
    BN-5Al2O3@BaTiO3/PVDF 5 5
    BN-10Al2O3@BaTiO3/PVDF 5 10
    BN-15Al2O3@BaTiO3/PVDF 5 15
    BN-20Al2O3@BaTiO3/PVDF 5 20
    下载: 导出CSV

    表  2  不同聚合物基复合材料的介电常数、击穿场强和热导率的增长对比

    Table  2.   Comparison of enhancement in dielectric constant, breakdown strength and thermal conductivity of different polymer composites

    Materialsεr enhancement
    /%
    Eb enhancement
    /%
    TCEF
    /%
    Ref.
    5wt%BN-5wt%Al2O3@BaTiO3 NFs/PVDF 44.0 143.2 185.4 This work
    3vol%BN/PVDF <0 59.8 271.4 [12]
    20wt%BN@PDA@Al2O3/PI 26.9 71.7 400.0 [17]
    6wt%BN-1.5wt%GO/PEN 94.1 <0 9.41 [20]
    12wt%D@BTW-fBNNSs/PMIA 46.7 17.5 114.5 [24]
    50wt%BN-VTMS/SR ~14.8 46.9 156.0 [26]
    5wt%Al2O3/regenerated cellulose ~12.5 21.9 534.3 [27]
    Notes: εr, Eb and TCEF—Dielectric constant, breakdown strength and thermal conductivity enhancement factor of polymer composites, respectively; D@BTW-fBNNSs/PMIA—Polydopamine@barium titanate nanowires-octadecyl isocyanate functionalized boron nitride nanosheets/poly(m-phenyleneisophthalamide); PDA—Polydopamine; PI—Polyimide; GO—Graphene oxide; PEN—Poly(arylene ether nitrile); VTMS—Vinyl trimethoxysilane; SR—Silicone rubber.
    下载: 导出CSV
  • [1] BEHERA R, ELANSERALATHAN K. A review on polyvinylidene fluoride polymer based nanocomposites for energy storage[J]. Journal of Energy Storage,2022,48:103788. doi: 10.1016/j.est.2021.103788
    [2] HUANG C L, QIAN X, YANG R G. Thermal conductivity of polymers and polymer nanocomposites[J]. Materials Science & Engineering: R: Reports,2018,132:1-22.
    [3] WANG Y F, CUI J, YUAN Q B, et al. Significantly enhanced breakdown strength and energy density in sandwich-structured barium titanate/poly(vinylidene fluoride) nanocomposites[J]. Advanced Materials,2015,27(42):6658-6663. doi: 10.1002/adma.201503186
    [4] LU X, ZHANG L, TONG Y, et al. BST-P(VDF-CTFE) nanocomposite films with high dielectric constant, low dielectric loss and high energy-storage density[J]. Composites Part B: Engineering,2019,168:34-43. doi: 10.1016/j.compositesb.2018.12.059
    [5] KAUR S, SINGH D P. On the structural, dielectric and energy storage behavior of PVDF-CaCu3Ti4O12 nanocomposite films[J]. Materials Chemistry and Physics,2020,239:122301. doi: 10.1016/j.matchemphys.2019.122301
    [6] TANG H X, LIN Y R, SODANO H A. Synthesis of high aspect ratio BaTiO3 nanowires for high energy density nanocomposite capacitors[J]. Advanced Energy Materials,2013,3(4):451-456. doi: 10.1002/aenm.201200808
    [7] HUANG X Y, SUN B, ZHU Y K, et al. High-k polymer nanocomposites with 1D filler for dielectric and energy storage applications[J]. Progress in Materials Science,2019,100:187-225. doi: 10.1016/j.pmatsci.2018.10.003
    [8] PAN Z B, YAO L M, ZHAI J W, et al. Significantly improved dielectric properties and energy density of polymer nanocomposites via small loaded of BaTiO3 nanotubes[J]. Composites Science and Technology,2017,147:30-38.
    [9] LIU S H, WANG J, SHEN B, et al. Poly(vinylidene fluoride) nanocomposites with a small loading of core-shell structured BaTiO3@Al2O3 nanofibers exhibiting high discharged energy density and efficiency[J]. Journal of Alloys and Compounds,2017,696:136-146. doi: 10.1016/j.jallcom.2016.11.186
    [10] GUERRA V, WAN C Y, MCNALLY T. Thermal conductivity of 2D nano-structured boron nitride (BN) and its compo-sites with polymers[J]. Progress in Materials Science,2019,100:170-186. doi: 10.1016/j.pmatsci.2018.10.002
    [11] 吴加雪, 唐超, 张天栋, 等. 氮化硼和氧化锌晶须共掺杂环氧树脂复合材料的导热与电性能[J]. 复合材料学报, 2020, 37(6):1285-1294.

    WU Jiaxue, TANG Chao, ZHANG Tiandong, et al. Thermal conductivity and electrical property of epoxy composites mixed with boron nitride and zinc oxide whisker[J]. Acta Materiae Compositae Sinica,2020,37(6):1285-1294(in Chinese).
    [12] CHEN J P, LIU J L, CAI L X, et al. Incorporation of elaborately synthesized BNNSs by a mild mechanical stirring process for the concurrent enhancement of thermal conductivity and dielectric breakdown strength of PVDF[J]. Composites Science and Technology,2020,200:108381. doi: 10.1016/j.compscitech.2020.108381
    [13] DUAN G Y, WANG Y, YU J R, et al. Novel poly(m-phenyleneisophthalamide) dielectric composites with enhanced thermal conductivity and breakdown strength utilizing functionalized boron nitride nanosheets[J]. Macromolecular Materials and Engineering,2019,304(11):1900310. doi: 10.1002/mame.201900310
    [14] 中国国家标准化管理委员会. 塑料 拉伸性能的测定: GB/T 1040.3—2006[S]. 北京: 中国标准出版社, 2006.

    Standardization Administration of China. Plactis—Determination of tensile properties: GB/T 1040.3—2006[S]. Beijing: China Standards Press, 2006(in Chinese).
    [15] ASTM. Standard test method for thermal diffusivity by the flash method: ASTME-1461[S]. West Conshohocken: ASTM, 2001.
    [16] PAN Z B, YAO L M, ZHAI J W, et al. Ultrafast discharge and high-energy-density of polymer nanocomposites achieved via optimizing the structure design of barium titanates[J]. ACS Sustainable Chemistry & Engineering,2017,5:4707-4717.
    [17] DUAN G Y, CAO Y T, QUAN J Y, et al. Bioinspired construction of BN@polydopamine@Al2O3 fillers for preparation of a polyimide dielectric composite with enhanced thermal conductivity and breakdown strength[J]. Journal of Materials Science,2020,55:8170-8184. doi: 10.1007/s10853-020-04596-5
    [18] 刘卫华. 钛酸钡系陶瓷纤维的制备与表征[D]. 石家庄: 河北师范大学, 2007.

    LIU Weihua. Preparation and characterization of barium-based titanate ceramic fibers[D]. Shijiazhuang: Hebei Normal University, 2007(in Chinese).
    [19] GUO F H, ZHAO J, LI F X, et al. Polar crystalline phases of PVDF induced by interaction with functionalized boron nitride nanosheets[J]. CrystEngComm,2020,22:6207-6215. doi: 10.1039/D0CE01001D
    [20] LAN T G, ZHANG W X, WANG Y J, et al. Dielectric films with good dielectric breakdown strength based on poly(arylene ether nitrile) enhanced by nano boron nitride and graphene oxide via noncovalent interaction[J]. Journal of Physics and Chemistry of Solids,2021,151:109906. doi: 10.1016/j.jpcs.2020.109906
    [21] CHEN J J, DENG W, REN Y Y, et al. Enhanced dielectric permittivity and breakdown strength of poly(vinylidene fluoride) nanocomposites containing core-shell BaTiO3@TiO2 nanofibers[J]. Journal of Materials Science: Materials in Electronics,2022,33(5):2667-2676. doi: 10.1007/s10854-021-07475-0
    [22] PONNAMMA D, AL-MAADEED M. Influence of BaTiO3/white graphene filler synergy on the energy harvesting performance of a piezoelectric polymer nanocomposite[J]. Sustainable Energy Fuels,2019,3:774-785. doi: 10.1039/C8SE00519B
    [23] LI Y, HUANG X Y, HU Z W, et al. Large dielectric constant and high thermal conductivity in poly(vinylidene fluoride)/barium titanate/silicon carbide three-phase nanocomposites[J]. ACS Applied Materials & Interfaces,2011,3 (11):4396-4403.
    [24] 段广宇, 胡凤英, 胡祖明, 等. 钛酸钡-氮化硼/聚间苯二甲酰间苯二胺复合电介质的制备与导热性能[J]. 复合材料学报, 2022, 39(3):1079-1090. doi: 10.13801/j.cnki.fhclxb.20210513.005

    DUAN Guangyu, HU Fengying, HU Zuming, et al. Preparation and thermal conductivity of barium titanate-boron nitride/poly(m-phenyleneisophthalamide) dielectric composites[J]. Acta Materiae Compositae Sinica,2022,39(3):1079-1090(in Chinese). doi: 10.13801/j.cnki.fhclxb.20210513.005
    [25] GUO F M, SHEN X, ZHOU J M, et al. Highly thermally conductive dielectric nanocomposites with synergistic alignments of graphene and boron nitride nanosheets[J]. Advanced Functional Materials,2020,30(19):1910826. doi: 10.1002/adfm.201910826
    [26] CHEN X, WANG J Q, ZHANG C, et al. Performance of silicone rubber composites using boron nitride to replace alumina tri-hydrate[J]. High Voltage,2021,6:480-486. doi: 10.1049/hve2.12062
    [27] YIN Y N, HE J C, ZHANG C G, et al. Flexible cellulose/alumina (Al2O3) nanocomposite films with enhanced energy density and efficiency for dielectric capacitors[J]. Cellulose,2021,28:1541-1553.
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  905
  • HTML全文浏览量:  430
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-05
  • 修回日期:  2022-08-10
  • 录用日期:  2022-08-15
  • 网络出版日期:  2022-08-25
  • 刊出日期:  2023-06-15

目录

    /

    返回文章
    返回