留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纤维增强树脂复合材料中的褶皱缺陷:微应力无损检测

马利 文安戈 申川川 郭静 郑津洋

马利, 文安戈, 申川川, 等. 纤维增强树脂复合材料中的褶皱缺陷:微应力无损检测[J]. 复合材料学报, 2022, 39(7): 3590-3602. doi: 10.13801/j.cnki.fhclxb.20210903.001
引用本文: 马利, 文安戈, 申川川, 等. 纤维增强树脂复合材料中的褶皱缺陷:微应力无损检测[J]. 复合材料学报, 2022, 39(7): 3590-3602. doi: 10.13801/j.cnki.fhclxb.20210903.001
MA Li, WEN Ange, SHEN Chuanchuan, et al. Wrinkles in fiber-reinforced resin composites: Micro-stress non-destructive testing[J]. Acta Materiae Compositae Sinica, 2022, 39(7): 3590-3602. doi: 10.13801/j.cnki.fhclxb.20210903.001
Citation: MA Li, WEN Ange, SHEN Chuanchuan, et al. Wrinkles in fiber-reinforced resin composites: Micro-stress non-destructive testing[J]. Acta Materiae Compositae Sinica, 2022, 39(7): 3590-3602. doi: 10.13801/j.cnki.fhclxb.20210903.001

纤维增强树脂复合材料中的褶皱缺陷:微应力无损检测

doi: 10.13801/j.cnki.fhclxb.20210903.001
基金项目: 国家重点研发计划(2019YFB1504801);浙江省重点研发计划(2020C01118);浙江省自然科学基金(LQ17E050007)
详细信息
    通讯作者:

    马利,博士,副教授,硕士生导师,研究方向为冲击动力学及复合材料力学 E-mail: malizjut@zjut.edu.cn

  • 中图分类号: TB332;V258.3

Wrinkles in fiber-reinforced resin composites: Micro-stress non-destructive testing

  • 摘要: 纤维增强树脂复合材料在制造和服役过程中会不可避免地产生各类缺陷,且缺陷种类多、特征尺寸分散,检测难度大。缺陷检测的最终目的是对含缺陷构件的机械力学性能给出适应性评价,为此提出了一种特别适合于纤维增强树脂复合材料的集缺陷检测和性能评价为一体的微应力无损检测方法。该方法对构件施加一定的载荷使其处于微应力状态,结合全场位移的光学测量技术,捕捉缺陷导致的异常响应,以褶皱缺陷为例给出了具体的实施过程。首先基于褶皱缺陷特征响应的预测结果设计了特定的检测方案,并基于光栅投影测量技术创新性地提出了一种测量离面位移的新方法。试验结果表明,在轴向微应力加载下,利用提出的光栅投影测量方法可以探测到褶皱缺陷导致的离面位移畸变,畸变的位置和大小反映了缺陷的位置和严重程度。同时由于使用了光-力学的综合检测方法,可以跨越对缺陷具体形貌尺寸的探查,直接获得含缺陷构件在给定工况下的力学行为响应,为构件适应性评价提供参考依据。

     

  • 图  1  纤维增强树脂复合材料均匀型褶皱

    Figure  1.  Uniform wrinkle in fiber-reinforced resin composites

    A—Fiber waviness; λ—Wavelength

    图  2  纤维增强树脂复合材料中含均匀型褶皱的RVE等效刚度计算模型

    Figure  2.  Calculation model of equivalent stiffness of RVE with uniform wrinkle in fiber-reinforced resin composites

    Cij—Ply stiffness matrix; C*—Equivalent stiffness matrix of wrinkle-free laminates; C**—Equivalent stiffness matrix of laminates with uniform wrinkle; θk—Orientation angle of kth ply; φ—Out-of-plane misalignment

    图  3  含分散性褶皱的纤维增强树脂复合材料薄板模型

    Figure  3.  Thin plate model for fiber-reinforced resin composites with dispersed wrinkles

    图  4  CF/EP复材层合板的不同加载方式

    Figure  4.  Schematic of different loading modes for CF/EP composite laminates

    σx—Axial tensile stress; My—Bending moment; τxy—Shearing stress

    图  5  含随机褶皱缺陷的CF/EP复材层合板拉伸位移响应

    Figure  5.  Displacement responses of CF/EP composite laminates with randomly dispersed wrinkle defects under tensile load

    u—In-plane displacement in x-direction; v—In-plane displacement in y-direction; w—Out-of-plane displacement in z-direction

    图  6  无缺陷的CF/EP复材层合板拉伸位移响应

    Figure  6.  Displacement responses of pristine CF/EP composite laminates under tensile load

    u—In-plane displacement in x-direction; v—In-plane displacement in y-direction; w—Out-of-plane displacement in z-direction

    图  7  含随机褶皱缺陷的CF/EP复材层合板弯曲位移响应

    Figure  7.  Displacement responses of CF/EP composite laminates with randomly dispersed wrinkle defects under bending load

    u—In-plane displacement in x-direction; v—In-plane displacement in y-direction; w—Out-of-plane displacement in z-direction

    图  8  无缺陷的CF/EP复材层合板弯曲位移响应

    Figure  8.  Displacement responses of pristine CF/EP composite laminates under bending load

    u—In-plane displacement in x-direction; v—In-plane displacement in y-direction; w—Out-of-plane displacement in z-direction

    图  9  含随机褶皱缺陷的CF/EP复材层合板剪切位移响应

    Figure  9.  Displacement responses of CF/EP composite laminates with randomly dispersed wrinkle defects under shearing load

    图  10  无缺陷的CF/EP复材层合板剪切位移响应

    Figure  10.  Displacement responses of pristine CF/EP composite laminates under shearing load

    图  11  钢棒法制作含褶皱缺陷的CF/EP复材层合板试样

    Figure  11.  Wrinkled specimen of CF/EP composite laminates made with steel bar method

    图  12  CF/EP试样的褶皱形貌尺寸

    Figure  12.  Morphology of the wrinkle in CF/EP specimens

    图  13  CF/EP试样Ⅰ与无缺陷CF/EP试样离面位移有限元结果对比

    Figure  13.  Comparison of finite element results on out-of-plane displacement between CF/EP specimen Ⅰ and wrinkle-free CF/EP specimen

    图  14  三维点云重构算法提取离面位移

    Figure  14.  Schematic diagram of point cloud data reconstruction algorithm.

    图  15  含褶皱缺陷的CF/EP复材层合板试样测试装置示意图

    Figure  15.  Schematic diagram of the test device of wrinkled specimen of CF/EP composite

    图  16  CF/EP试样I的加载前后三维点云

    Figure  16.  3D point cloud of CF/EP specimen I before and after loading

    图  17  CF/EP试样I的检测结果

    Figure  17.  Test results of CF/EP specimen I

    图  18  CF/EP试样II的检测结果

    Figure  18.  Test results of CF/EP specimen II

    图  19  CF/EP复材层合板离面位移及位移比随波纹比的变化

    Figure  19.  Normalized out-of-plane displacement and displacement ratio various with wrinkle ratio of CF/EP composite laminates

    图  20  CF/EP复材层合板离面位移及位移比随载荷的变化

    Figure  20.  Normalized out-of-plane displacement and displacement ratio various with applied node force of CF/EP composite laminates

    表  1  碳纤维(CF)/环氧树脂(EP)复合材料弹性参数

    Table  1.   Elastic parameters of carbon fiber (CF)/epoxy (EP) composites

    E11 /GPa(E22 /E33) /GPaG23 /GPaG31 /GPaG12 /GPaν21ν32ν31
    133.3 9.09 3.16 7.24 7.23 0.261 0.436 0.261
    Notes: E11, E22, E33—Elastic modulus (direction 11, 22, 33); G12, G23, G31—Shear modulus (direction 12, 23, 31); v21, v32, v31—Poisson’s ratio (direction 21, 32, 31).
    下载: 导出CSV

    表  2  CF/EP复材层合板中褶皱缺陷对不同载荷的响应敏感性

    Table  2.   Response sensitivity of wrinkle defects to different loading modes in CF/EP composite laminates

    Loading modeUniaxial tensileBendingShearing
    Response sensitivityIn-plane displacementu
    v
    Out-of-plane displacementw
    Note: *Sensitivity: >>.
    下载: 导出CSV

    表  3  CF/EP复材层合板中层间弱粘结缺陷对不同载荷的响应敏感性[30]

    Table  3.   Response sensitivity of weak bonding defects to different loading modes in CF/EP composite laminates

    Loading modeUniaxial tensileBendingShearing
    Response sensitivityIn-plane displacementu
    v
    Out-of-plane displacementw
    下载: 导出CSV

    表  4  CF/EP试样中的缺陷参数

    Table  4.   Defect parameters of the CF/EP specimens

    Specimen numberLayup sequencesWrinkle parameters
    Wavelength/mmAmplitude/mmWrinkle ratio
    I[0/90/0/90]s6.01.20.200
    II[0/90/0/90]s12.00.80.067
    下载: 导出CSV

    表  5  CF/EP试样离面位移实测结果与有限元结果比较

    Table  5.   Comparison of out-of-plane displacement of CF/EP specimens between measurement results and finite element results

    Specimen numberLoad/NMeasurement results/cmFinite element results/cmError
    I 200 0.01078 0.0089 17.7%
    500 0.01806 0.0154 14.7%
    800 0.02093 0.0193 7.8%
    1 000 0.02359 0.0212 10.1%
    1 200 0.02508 0.0228 10.0%
    200 0.00218 0.0027 20.1%
    500 0.00918 0.0101 8.6%
    1 200 0.01361 0.0115 18.3%
    下载: 导出CSV
  • [1] 欧阳佳斯. 带波纹/褶皱类缺陷的纤维增强树脂基复合材料压缩性能研究[D]. 武汉: 武汉理工大学, 2016.

    OUYANG Jiasi. Study on the compressive mechanical pro-perty of fiberreinforced composites with waviness defect[D]. Wuhan: Wuhan University of Technology, 2016(in Chinese).
    [2] TAY T E, SHEN F. Analysis of delamination growth in lami-nated composites with consideration for residual thermal stress effects[J]. Journal of Composite Materials,2002,36(11):1299-1320. doi: 10.1177/0021998302036011592
    [3] 丁珊珊. 考虑孔隙形貌的CFRP复合材料超声散射机理及孔隙率检测方法研究[D]. 大连: 大连理工大学, 2017.

    DING Shanshan. Ultrasonic scattering mechanism and porosity detection in CFRP composite materials considering void morphology[D]. Dalian: Dalian University of Technology, 2017(in Chinese).
    [4] SAENZ-CASTILLO D, MARTÍN M I, CALVO S, et al. Effect of processing parameters and void content on mechanical properties and NDI of thermoplastic composites[J]. Composites Part A: Applied Science and Manufacturing,2019,121:308-320. doi: 10.1016/j.compositesa.2019.03.035
    [5] MUKHOPADHYAY S, JONES M I, HALLETT S R. Tensile failure of laminates containing an embedded wrinkle; numerical and experimental study[J]. Composites Part A: Applied Science and Manufacturing,2015,77:219-228. doi: 10.1016/j.compositesa.2015.07.007
    [6] NELSON L J, SMITH R A. Fibre direction and stacking sequence measurement in carbon fibre composites using Radon transforms of ultrasonic data[J]. Composites Part A: Applied Science and Manufacturing,2019,118:1-8. doi: 10.1016/j.compositesa.2018.12.009
    [7] SUTCLIFFE M P F, LEMANSKI S L, SCOTT A E. Measurement of fibre waviness in industrial composite components[J]. Composites Science and Technology,2012,72(16):2016-2023. doi: 10.1016/j.compscitech.2012.09.001
    [8] CREIGHTON C J, SUTCLIFFE M, CLYNE T W. A multiple field image analysis procedure for characterisation of fibre alignment in composites[J]. Composites Part A: Applied Science and Manufacturing,2001,32(2):221-229. doi: 10.1016/S1359-835X(00)00115-9
    [9] REVOL V, PLANK B, KAUFMANN R, et al. Laminate fibre structure characterisation of carbon fibre-reinforced polymers by X-ray scatter dark field imaging with a grating interferometer[J]. NDT & E International,2013,58:64-71.
    [10] ZARDAN J P, GUEUDRE C, GORNELOUP G. Study of induced ultrasonic deviation for the detection and identification of ply waviness in carbon fibre reinforced polymer[J]. NDT & E International,2013,56(jun.):1-9.
    [11] LARRAÑAGA-VALSERO B, SMITH R A, TAYONG R B, et al. Wrinkle measurement in glass-carbon hybrid laminates comparing ultrasonic techniques: A case study[J]. Composites Part A: Applied Science and Manufacturing,2018,114:225-240. doi: 10.1016/j.compositesa.2018.08.014
    [12] ZHANG Z, LIU M, LI Q, et al. Visualized characterization of diversified defects in thick aerospace composites using ultrasonic B-scan[J]. Composites Communications,2020,22:100435. doi: 10.1016/j.coco.2020.100435
    [13] PARK B, AN Y, SOHN H. Visualization of hidden delamination and debonding in composites through noncontact laser ultrasonic scanning[J]. Composites Science and Technology,2014,100:10-18. doi: 10.1016/j.compscitech.2014.05.029
    [14] IBRAHIM M E, SMITH R A, WANG C H. Ultrasonic detection and sizing of compressed cracks in glass-and carbon-fibre reinforced plastic composites[J]. NDT & E International,2017,92:111-121.
    [15] ELHAJJAR R, HAJ-ALI R, WEI B. An infrared thermoelastic stress analysis investigation for detecting fiber waviness in composite structures[J]. Polymer-Plastics Technology and Engineering,2014,53(12):1251-1258. doi: 10.1080/03602559.2014.886116
    [16] KATUNIN A, DRAGAN K, DZIENDZIKOWSKI M. Damage identification in aircraft composite structures: A case study using various non-destructive testing techniques[J]. Composite Structures,2015,127:1-9.
    [17] LI Y, SUN B, GU B. Impact shear damage characterizations of 3D braided composite with X-ray micro-computed tomography and numerical methodologies[J]. Composite Structures,2017,176(9):43-54.
    [18] CHEN X. Fractographic analysis of sandwich panels in a composite wind turbine blade using optical microscopy and X-ray computed tomography[J]. Engineering Failure Analysis,2020,111:104475. doi: 10.1016/j.engfailanal.2020.104475
    [19] 洪友仁, 何浩培, 何小元. 剪切散斑: 一种光学测量技术及其应用[J]. 实验力学, 2006, 21(6):667-688. doi: 10.3969/j.issn.1001-4888.2006.06.001

    HONG Youren, HE Haopei, HE Xiaoyuan. Shearography: An optical measurement technique and applications[J]. Journal of Experimental Mechanics,2006,21(6):667-688(in Chinese). doi: 10.3969/j.issn.1001-4888.2006.06.001
    [20] FERREIRA L M, GRACIANI E, PARÍS F. Three dimensional finite element study of the behaviour and failure mechanism of non-crimp fabric composites under in-plane compression[J]. Composite Structures,2016,149:106-113. doi: 10.1016/j.compstruct.2016.04.022
    [21] LEONG M, HVEJSEL C F, THOMSEN O T, et al. Fatigue failure of sandwich beams with face sheet wrinkle defects[J]. Composites Science and Technology,2012,72(13):1539-1547.
    [22] AYMERICH F, DORE F, PRIOLO P. Prediction of impact-induced delamination in cross-ply composite laminates using cohesive interface elements[J]. Composites Science and Technology,2008,68(12):2383-2390. doi: 10.1016/j.compscitech.2007.06.015
    [23] TAKEDA T. Micromechanics model for three-dimensional effective elastic properties of composite laminates with ply wrinkles[J]. Composite Structures,2018,189:419-427. doi: 10.1016/j.compstruct.2017.10.086
    [24] 申川川, 马利, 文安戈, 等. 纤维增强树脂复合材料中的褶皱缺陷: 分散性与虚拟测试[J]. 复合材料学报, 2022, 39(3):1332-1342. doi: 10.13801/j.cnki.fhclxb.20210518.007

    SHEN Chuanchuan, MA Li, WEN Ange, et al. Wrinkles in fiber-reinforced resin composites (Part I): Heterogeneity and virtual test[J]. Acta Materiae Composites Sinica,2022,39(3):1332-1342(in Chinese). doi: 10.13801/j.cnki.fhclxb.20210518.007
    [25] MUKHOPADHYAY S, JONES M I, HALLETT S R. Compressive failure of laminates containing an embedded wrinkle; experimental and numerical study[J]. Composites Part A: Applied Science and Manufacturing,2015,73:132-142. doi: 10.1016/j.compositesa.2015.03.012
    [26] LEMANSKI S L, SUTCLIFFE M P F. Compressive failure of finite size unidirectional composite laminates with a region of fibre waviness[J]. Composites Part A: Applied Science and Manufacturing,2012,43(3):435-444.
    [27] RIDDLE T, CAIRNS D, NELSON J. Characterization of manu-facturing defects common to composite wind turbine blades: Flaw characterization[C]. 52nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Denver, 2011.
    [28] SHEN C, MA L, XU P, et al. Virtual testing of mechanical response of composite plates with normally distributed wrinkles[J]. Composite Structures,2019,229:111440. doi: 10.1016/j.compstruct.2019.111440
    [29] MA L, SHEN C C, WEN A G, et al. Dependence between displacement distortion and heterogeneity of vegetable fiber composites[J]. Mechanics of Advanced Materials and Structures, 2022, 29: 1889079 .
    [30] SHEN C C, MA L, WEN A G, et al. Composite plates with randomly distributed weak bonding: Heterogeneity and virtual testing[J]. Mechanics of Advanced Materials and Structures,2022,29:1928344.
    [31] FELIPE-SESÉ L, LÓPEZ-ALBA E, SIEGMANN P, et al. Integration of fringe projection and two-dimensional digital image correlation for three-dimensional displacements measurements[J]. Optical Engineering,2016,55(12):121711. doi: 10.1117/1.OE.55.12.121711
    [32] WU Z J, GUO W B, PAN B, et al. A DIC-assisted fringe projection profilometry for high-speed 3D shape, displacement and deformation measurement of textured surfaces[J]. Optics and Lasers in Engineering, 2021, 142: 106614.
  • 加载中
图(20) / 表(5)
计量
  • 文章访问数:  1005
  • HTML全文浏览量:  325
  • PDF下载量:  82
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-07
  • 修回日期:  2021-07-18
  • 录用日期:  2021-08-20
  • 网络出版日期:  2021-09-03
  • 刊出日期:  2022-07-30

目录

    /

    返回文章
    返回