Low-temperature sintering of CaZnSi2O6 glass ceramics with machinable precursor based on silicone rubber
-
摘要:
陶瓷材料的应用由于其烧结温度高、加工性能差而受到限制。硅橡胶基可陶瓷化复合材料在常温下具有良好的加工性能,而在高温下可以转化为陶瓷材料。因此将硅橡胶基可陶瓷化复合材料作为可加工前驱体,可以解决陶瓷材料的加工问题。然而,以往的研究只是将可陶瓷化复合材料作为一种耐火阻燃材料,导致烧结后陶瓷材料的机械强度较低,弯曲强度一般不超过30 MPa。为了将这种陶瓷材料应用于实际工程中,提高陶瓷材料的机械强度是至关重要的。本研究提出了一种具有可加工前驱体、低烧结温度和高机械强度的CaZnSi2O6玻璃陶瓷。为此使用硅橡胶基可陶瓷化复合材料作为低温烧结CaZnSi2O6玻璃陶瓷的可加工前驱体,研究了前驱体中硅橡胶比例和低熔点玻璃粉含量对陶瓷材料弯曲强度的影响,并得到了前驱体的基础配方。前驱体具有良好的加工性能,可以剪切成不同尺寸不同形状并完成陶瓷材料的烧结。通过加入适量的Bi2O3作为辅助助熔剂,提高了陶瓷的致密度和机械强度,弯曲强度由90.54 MPa提升至110.48 MPa,提高了约22%,同时线性收缩率仅增加了1.88%。Bi元素保留在玻璃相中,没有改变陶瓷的晶相物质。玻璃相中的Bi元素能够通过抑制电导和热离子极化,从而抑制损耗随温度升高而增大的趋势。也就是说Bi元素的加入使得材料在高温下的工频损耗显著降低。此外,Bi2O3的加入还使材料的工频击穿场强提高了约25%。 (a)不添加Bi2O3与(b)添加Bi2O3的陶瓷材料表面显微形貌 温度对陶瓷试样工频介电性能的影响 Abstract: The applications of ceramics are limited by their high sintering temperatures and poor processability. The ceramizable silicone rubber composites were prepared using kilchoanite as a ceramic filler, low-melting-point glass frit as a flux, and nano SiO2 as a reinforcing agent. The CaZnSi2O6 glass ceramics were sintered at 1000℃ using the ceramizable composites as machinable precursors. The effect of the mass fraction of silicone rubber and the content of glass frit on the mechanical properties of the ceramics was studied. The effect of Bi2O3 as a secondary flux on the microstructure, flexural strength and dielectric properties of the ceramics was investigated. The results showed that the flexural strength of the ceramic samples increased first and then decreased with reducing the mass fraction of silicone rubber or increasing the content of glass frit. The maximum flexural strength of the ceramic samples without Bi2O3 sintered at 1000℃ was 90.54 MPa, and the linear contraction was only 15%. A proper content of Bi2O3 not only improved the density of microstructure and increased the flexural strength to 110.48 MPa, but also decreased the tanδ of the ceramics at power frequency and high temperature obviously, and improved the breakdown strength of the ceramics at power frequency. The precursors in this study had a good processability and could complete the sintering of ceramics with different sizes and shapes.-
Key words:
- ceramizable composites /
- machinable precursors /
- glass ceramics /
- microstructure /
- dielectric properties
-
表 1 硅橡胶基可陶瓷化复合材料的配方
Table 1. Formula of ceramizable silicone rubber composites
Sample Mass ratio/g Wx/wt% Silicone rubber Kilchoanite Glass frit Nano SiO2 S1 100 50 30 30 47.62 S2 100 100 60 60 31.25 S3 100 117 70 70 28.04 S4 100 133 80 80 25.42 S5 100 150 90 90 23.26 S6 100 200 120 120 18.52 G1 100 117 65 70 18.47 G2 100 117 70 70 19.61 G3 100 117 75 70 20.72 G4 100 117 80 70 21.80 G5 100 117 90 70 23.87 G6 100 117 100 70 25.84 Notes: Wx is the mass fraction of silicone rubber for S1~S6 and the mass fraction of glass frit for G1~G6. -
[1] 柯瑞林, 邹雄, 王金合, 等. 陶瓷化高分子复合材料研究进展[J]. 绝缘材料, 2018, 51(12):1-5. doi: 10.16790/j.cnki.1009-9239.im.2018.12.001KE Ruilin, ZOU Xiong, WANG Jinhe, et al. Research progress of ceramifiable polymer composites[J]. Insulating Materials,2018,51(12):1-5(in Chinese). doi: 10.16790/j.cnki.1009-9239.im.2018.12.001 [2] 唐红川, 李鹏虎, 匡国文, 等. 陶瓷化硅橡胶研究进展[J]. 绝缘材料, 2019, 52(7):1-9.TANG Hongchuan, LI Penghu, KUANG Guowen, et al. Research progress on ceramic silicone rubber[J]. Insulating Materials,2019,52(7):1-9(in Chinese). [3] HANU L G, SIMON G P, MANSOURI J, et al. Development of polymer-ceramic composites for improved fire resistance[J]. Journal of Materials Processing Technology,2004,153-154:401-407. doi: 10.1016/j.jmatprotec.2004.04.104 [4] MANSOURI J, BURFORD R P, CHENG Y B, et al. Formation of strong ceramified ash from silicone-based compositions[J]. Journal of. Materials Science,2005,40(21):5741-5749. doi: 10.1007/s10853-005-1427-8 [5] MANSOURI J, BURFORD R P, CHENG Y B. Pyrolysis behaviour of silicone-based ceramifying composites[J]. Materials Science and Engineering A,2006,425(1-2):7-14. doi: 10.1016/j.msea.2006.03.047 [6] HANU L G, SIMON G P, CHENG Y B. Thermal stability and flammability of silicone polymer composites[J]. Polymer Degradation and Stability,2006,91(6):1373-1379. doi: 10.1016/j.polymdegradstab.2005.07.021 [7] MANSOURI J, WOOD C A, ROBERT K, et al. Investigation of the ceramifying process of modified silicone silicate compositions[J]. Journal of Materials Science,2007,42(15):6046-6055. doi: 10.1007/s10853-006-1163-8 [8] HAMDANI S, LONGUET C, PERRIN D, et al. Flame retardancy of silicone-based materials[J]. Polymer Degradation and Stability,2009,94(4):465-495. doi: 10.1016/j.polymdegradstab.2008.11.019 [9] PĘDZICH Z, BIELIŃSKI D M, ANYSZKA R, et al. Ceramizable composites for fire resistant applications[J]. Key Engineering Materials,2014,602-603:290-295. doi: 10.4028/www.scientific.net/KEM.602-603.290 [10] YU L, ZHOU S T, ZOU H W, et al. Thermal stability and ablation properties study of aluminum silicate ceramic fiber and acicular wollastonite filled silicone rubber composite[J]. Journal of Applied Polymer Science,2014,131(1):39700. [11] GUO J H, ZHANG Y, LI H J, et al. Effect of the sintering temperature on the microstructure, properties and formation mechanism of ceramic materials obtained from polysiloxane elastomer-based ceramizable composites[J]. Journal of Alloys and Compounds,2016,678:499-505. doi: 10.1016/j.jallcom.2016.04.030 [12] HU S, CHEN F, LI J G, et al. The ceramifying process and mechanical properties of silicone rubber/ammonium polyphosphate/aluminium hydroxide/mica composites[J]. Polymer Degradation and Stability,2016,126:196-203. doi: 10.1016/j.polymdegradstab.2016.02.010 [13] LOU F P, YAN W, GUO W H, et al. Preparation and properties of ceramifiable flame-retarded silicone rubber composites[J]. Journal of Thermal Analysis and Calorimetry,2017,130(2):813-821. doi: 10.1007/s10973-017-6448-4 [14] PĘDZICH Z, BUKAŃSKA A, BIELIŃSKI D M, et al. Microstructure evolution of silicone rubber-based composites during ceramization in different conditions[J]. Composites Theory and Practice,2012,12(4):251-255. [15] BIELIŃSKI D M, ANYSZKA R, PĘDZICH Z, et al. Ceramizable silicone rubber composites. Influence of type of mineral filler on ceramization[J]. Composites Theory and Practice,2012,12(4):256-261. [16] ANYSZKA R, BIELIŃSKI D M, PĘDZICH Z, et al. Influence of surface-modified montmorillonites on properties of silicone rubber-based ceramizable composites[J]. Journal of Thermal Analysis and Calorimetry,2015,119(1):111-121. doi: 10.1007/s10973-014-4156-x [17] WANG J H, JI C T, YAN Y T, et al. Mechanical and ceramifiable properties of silicone rubber filled with different inorganic fillers[J]. Polymer Degradation and Stability,2015,121:149-156. doi: 10.1016/j.polymdegradstab.2015.09.003 [18] IMIELA M, ANYSZKA R, BIELIŃSKI D M, et al. Effect of carbon fibers on thermal properties and mechanical strength of ceramizable composites based on silicone rubber[J]. Journal of Thermal Analysis and Calorimetry,2016,124(1):197-203. doi: 10.1007/s10973-015-5115-x [19] ANYSZKA R, BIELIŃSKI D M, PĘDZICH Z, et al. Effect of mineral filler additives on flammability, processing and use of silicone-based ceramifiable composites[J]. Polymer Bulletin,2018,75(4):1731-1751. doi: 10.1007/s00289-017-2113-0 [20] 孟盼, 王雁冰, 魏冲, 等. 硅藻土/硅橡胶可陶瓷化复合材料的制备及性能[J]. 复合材料学报, 2017, 34(1):53-59. doi: 10.13801/j.cnki.fhclxb.20160411.003MENG Pan, WANG Yanbing, WEI Chong, et al. Preparation and properties of ceramifiable diatomite/silicone rubber composites[J]. Acta Materiae Compositae Sinica,2017,34(1):53-59(in Chinese). doi: 10.13801/j.cnki.fhclxb.20160411.003 [21] LI P H, JIN H Y, WEI S C, et al. Ceramization mechanism of ceramizable silicone rubber composites with nano silica at low temperature[J]. Materials,2020,13(17):3708. doi: 10.3390/ma13173708 [22] 李函坚, 郭建华, 高伟, 等. 白炭黑对陶瓷化硅橡胶瓷化性能的影响[J]. 有机硅材料, 2015(5):360-365.LI Hanjian, GUO Jianhua, GAO Wei, et al. Effect of silica on ceramifying properties of silicone rubber-based ceramizable composites[J]. Silicone Material,2015(5):360-365(in Chinese). [23] 孟盼, 张光武, 熊梦, 等. 玻璃料对可陶瓷化硅橡胶基复合材料耐高温性能的影响[J]. 复合材料学报, 2016, 33(10):2205-2214.MENG Pan, ZHANG Guangwu, XIONG Meng, et al. Effect of glass frits on high-temperature resistance properties of ceramifiable silicone rubber matrix composites[J]. Acta Materiae Compositae Sinica,2016,33(10):2205-2214(in Chinese). [24] GUO J H, GAO W, WANG Y, et al. Effect of glass frit with low softening temperature on the properties, microstructure and formation mechanism of polysiloxane elastomer-based ceramizable composites[J]. Polymer Degradation and Stability,2017,136:71-79. doi: 10.1016/j.polymdegradstab.2016.12.012 [25] LOU F P, CHENG L H, LI Q Y, et al. The combination of glass dust and glass fiber as fluxing agents for ceramifiable silicone rubber composites[J]. RSC Advances,2017,7(62):38805-38811. doi: 10.1039/C7RA07432H [26] 唐红川, 李鹏虎, 匡国文, 等. 玻璃粉含量对陶瓷化硅橡胶性能的影响[J]. 硅酸盐学报, 2020, 38(6):870-876.TANG Hongchuan, LI Penghu, KUANG Guowen, et al. Effect of glass powder content on properties of ceramizable silicone rubber[J]. Journal of the Chinese Ceramic Society,2020,38(6):870-876(in Chinese). [27] LI P H, JIN H Y, LIU H D, et al. Low-temperature sintering of CaZnSi2O6 glass ceramics with machinable precursor based on silicone rubber and enhanced mechanical strength by Bi2O3[J]. Materials Letters,2022,324:132650. doi: 10.1016/j.matlet.2022.132650 -