留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

宽频强吸收阻抗渐变结构设计与制备

潘文辉 李冬萌 牛磊 王鲜 龚荣洲

潘文辉, 李冬萌, 牛磊, 等. 宽频强吸收阻抗渐变结构设计与制备[J]. 复合材料学报, 2023, 40(6): 3302-3311. doi: 10.13801/j.cnki.fhclxb.20220831.002
引用本文: 潘文辉, 李冬萌, 牛磊, 等. 宽频强吸收阻抗渐变结构设计与制备[J]. 复合材料学报, 2023, 40(6): 3302-3311. doi: 10.13801/j.cnki.fhclxb.20220831.002
PAN Wenhui, LI Dongmeng, NIU Lei, et al. Design and preparation of impedance gradient structure with broadband and strong absorption[J]. Acta Materiae Compositae Sinica, 2023, 40(6): 3302-3311. doi: 10.13801/j.cnki.fhclxb.20220831.002
Citation: PAN Wenhui, LI Dongmeng, NIU Lei, et al. Design and preparation of impedance gradient structure with broadband and strong absorption[J]. Acta Materiae Compositae Sinica, 2023, 40(6): 3302-3311. doi: 10.13801/j.cnki.fhclxb.20220831.002

宽频强吸收阻抗渐变结构设计与制备

doi: 10.13801/j.cnki.fhclxb.20220831.002
详细信息
    通讯作者:

    王鲜,博士,教授,博士生导师,研究方向为软磁材料及应用、电磁波调控技术 E-mail:wangx@hust.edu.cn

  • 中图分类号: TB332;TQ531.3

Design and preparation of impedance gradient structure with broadband and strong absorption

  • 摘要: 复合结构被广泛应用于吸波材料设计,然而,宽频、高效的吸收性能需求给结构材料的研制带来了挑战。本文基于熔融沉积成型3D打印技术,以超导电炭黑(CB)/热塑性聚氨酯(TPU)为原料,设计了一种阻抗渐变的结构型吸波材料。根据多层结构反射率计算公式,结合有限迭代分析方法,构建阻抗渐变结构理论分析模型,推导结构等效电磁参数、输入阻抗、反射率的计算方法。所设计的阻抗渐变结构在2~18 GHz范围内可实现−10 dB的反射损耗,其中,在2.68~18 GHz范围内,达到了−20 dB的强反射损耗。分析阻抗渐变结构的电场、磁场和功率损耗,进一步阐述单元结构的微波吸收机制。实验结果与仿真结果较吻合,本文为宽频、高效的一体化吸波结构设计提供了一种技术途径。

     

  • 图  1  制造过程示意图:(a) 炭黑(CB)/热塑性聚氨酯(TPU)复合丝材;(b) 熔融沉积成型(FDM)3D打印过程;(c) 样品实物图

    Figure  1.  Schematic illustration of the fabrication process: (a) Carbon black (CB)/thermoplastic polyurethanes (TPU) composite filament; (b) Fused deposition modeling (FDM) 3D printing; (c) Printed sample

    图  2  CB/TPU复合丝材的复介电常数和复磁导率 (a) 及导电损耗和极化损耗 (b)

    Figure  2.  Complex permittivity and complex permeability (a) and conductive loss and polarization loss (b) of CB/TPU composite filament

    ε', ε''—Complex permittivity; μ', μ''—Complex permeability; εc''—Conductance loss; εp''—Relaxation polarization loss

    图  3  等效多层吸波材料示意图

    Figure  3.  Schematic diagram of equivalent multilayer absorbing materials

    $ {\varepsilon _{{\text{eff}}}} $—Equivalent permittivity; n—Layer; △z—Layer thickness

    图  4  CB/TPU复合丝材的阻抗渐变结构示意图

    Figure  4.  Diagram of the impedance gradient structure of CB/TPU composite filament

    h—Thickness; x—Half of the angle; t—Half the length of the inner side; p—Unit length; d—Wall thickness

    图  5  不同结构参数对阻抗渐变结构反射损耗的影响

    Figure  5.  Effects of different structural parameters on reflection loss of the impedance gradient structure

    图  6  阻抗渐变结构(结构参数为h=30 mm、x=10°、p=12 mm、d=2.5 mm)输入阻抗与反射损耗计算结果:(a) 输入阻抗实部;(b) 输入阻抗虚部;(c) 反射损耗;(d) 不同频点下的阻抗

    Figure  6.  Impedance gradient structure (Structure parameters are h=30 mm, x=10°, p=12 mm, d=2.5 mm) input impedance and reflection loss calculation results: (a) Calculatedreal part; (b) Imaginary part of input impedance; (c) Reflection loss; (d) Impedance at different frequency

    Zin—Input impedance; ΓR—Relection loss; N—Iterations; Real_Zin—Real part of input impedance; Imag_Zin—Imaginary part of input impedance

    图  7  阻抗渐变吸波结构场分布:((b)~(e))电场;((f)~(i))磁场;((j)~(m)) 能量损耗

    Figure  7.  Distribution of the field of the impedance gradient structure: ((b)-(e)) Electric field; ((f)-(i)) Magnetic field; ((j)-(m)) Power loss

    图  8  阻抗渐变结构不同入射角θ下的反射损耗分析:(a) TE极化;(b) TM极化

    Figure  8.  Simulated reflection loss of the impedance gradient structure with various incident angles for different polarization: (a) TE polarization; (b) TM polarization

    图  9  阻抗渐变结构仿真与测试反射损耗对比

    Figure  9.  Comparison of the simulation and experimental reflection loss of the impedance gradient structure

    表  1  3D打印的主要工艺参数

    Table  1.   Settings of 3D printer

    Main printing parameterValues
    Layer height/mm0.1
    Infill density/%100
    Print speed/(mm·s−1)30
    Nozzle temperature/℃205
    Nozzle diameter/mm0.4
    Build platform temperature/℃90
    下载: 导出CSV

    表  2  与同类结构型吸波材料对比

    Table  2.   Compared with similar structural absorbing materials

    Relative thickness−10 dB bandwidth/GHz−20 dB bandwidth/GHzRef.
    0.11λ5.3-18None[12]
    0.21λ7-21.5None[16]
    0.12λ8-18None[19]
    0.20λ2-182.68-18This work
    Note: λ—−10 dB effective absorption bandwidth specifies the wavelength corresponding to the lowest frequency point.
    下载: 导出CSV
  • [1] ZHANG Y, HUANG Y, CHEN H, et al. Composition and structure control of ultralight graphene foam for high-performance microwave absorption[J]. Carbon,2016,105:438-447. doi: 10.1016/j.carbon.2016.04.070
    [2] 马瑶, 王建宝, 石立华, 等. 一款透明柔性超材料宽频微波吸收器[J]. 复合材料学报, 2022, 39(4):1601-1609.

    MA Yao, WANG Jianbao, SHI Lihua, et al. A wideband, transparent and flexible microwave metamaterial absorber[J]. Acta Materiae Compositae Sinica,2022,39(4):1601-1609(in Chinese).
    [3] JIAO Y, SONG Q, YIN X, et al. Grow defect-rich bamboo-like carbon nanotubes on carbon black for enhanced microwave absorption properties in X band[J]. Journal of Materials Science & Technology,2022,119:200-208.
    [4] SHU R, WAN Z, ZHANG J, et al. Synergistically assembled nitrogen-doped reduced graphene oxide/multi-walled carbon nanotubes composite aerogels with superior electromagnetic wave absorption performance[J]. Composites Science and Technology,2021,210:108818. doi: 10.1016/j.compscitech.2021.108818
    [5] 奚洪亮, 李伟铭, 赵永彬, 等. 改性氧化石墨烯/Fe3O4复合材料的制备及电磁吸收性能[J]. 复合材料学报, 2019, 36(3):708-714.

    XI Hongliang, LI Weiming, ZHAO Yongbin, et al. Preparation and electromagnetic absorbing properties of modified graphene oxide/Fe3O4 composites[J]. Acta Materiae Compositae Sinica,2019,36(3):708-714(in Chinese).
    [6] KASGOZ A, KORKMAZ M, DURMUS A. Compositional and structural design of thermoplastic polyurethane/carbon based single and multi-layer composite sheets for high-performance X-band microwave absorbing applications[J]. Polymer,2019,180:121672. doi: 10.1016/j.polymer.2019.121672
    [7] FENG W, WANG Y, CHEN J, et al. Reduced graphene oxide decorated with in-situ growing ZnO nanocrystals: Facile synthesis and enhanced microwave absorption properties[J]. Carbon,2016,108:52-60. doi: 10.1016/j.carbon.2016.06.084
    [8] YUN S, KIRAKOSYAN A, SURABHI S, et al. Controlled morphology of MWCNTs driven by polymer-grafted nanoparticles for enhanced microwave absorption[J]. Journal of Materials Chemistry C,2017,5(33):8436-8443. doi: 10.1039/C7TC02892J
    [9] LI D, YANG J, WANG X, et al. Ultrabroadband metamaterial absorber based on effectively coupled multilayer his loaded structure with dallenbach layer[J]. IEEE Transactions on Microwave Theory and Techniques,2022,70(1):232-238. doi: 10.1109/TMTT.2021.3129219
    [10] LAI W, WANG Y, HE J. Electromagnetic wave absorption properties of structural conductive ABS fabricated by fused deposition modeling[J]. Polymers (Basel),2020,12(6):1217. doi: 10.3390/polym12061217
    [11] GONG P, HAO L, LI Y, et al. 3D-printed carbon fiber/polyamide-based flexible honeycomb structural absorber for multifunctional broadband microwave absorption[J]. Carbon,2021,185:272-281. doi: 10.1016/j.carbon.2021.09.014
    [12] CHEN X, WU Z, ZHANG Z, et al. Ultra-broadband and wide-angle absorption based on 3D-printed pyramid[J]. Optics & Laser Technology,2020,124:105972.
    [13] HUANG Y, YUAN X, WANG C, et al. Flexible thin broadband microwave absorber based on a pyramidal periodic structure of lossy composite[J]. Optics Letters,2018,43(12):2764-2767. doi: 10.1364/OL.43.002764
    [14] HUANG Y, WU D, CHEN M, et al. Evolutionary optimization design of honeycomb metastructure with effective mechanical resistance and broadband microwave absorption[J]. Carbon,2021,177:79-89. doi: 10.1016/j.carbon.2021.02.066
    [15] PANG H, DUAN Y, DAI X, et al. The electromagnetic response of composition-regulated honeycomb structural materials used for broadband microwave absorption[J]. Journal of Materials Science & Technology,2021,88:203-214.
    [16] LIU Y, GUO W, HAN T. Ultra-broadband absorption with gradient pyramidal metamaterials[J]. Progress in Electromagnetics Research C,2017,78:217-224. doi: 10.2528/PIERC17081107
    [17] YE W, WU W, HU X, et al. 3D printing of carbon nanotubes reinforced thermoplastic polyimide composites with controllable mechanical and electrical performance[J]. Composites Science and Technology,2019,182:107671. doi: 10.1016/j.compscitech.2019.05.028
    [18] YOUNES H, LI R, LEE S E, et al. Gradient 3D-printed honeycomb structure polymer coated with a composite consisting of Fe3O4 multi-granular nanoclusters and multi-walled carbon nanotubes for electromagnetic wave absorption[J]. Synthetic Metals,2021,275:116731. doi: 10.1016/j.synthmet.2021.116731
    [19] LLESHI X, HOANG T, LOISEAUX B, et al. Design and full characterization of a 3D-printed hyperbolic pyramidal wideband microwave absorber[J]. IEEE Antennas and Wireless Propagation Letters,2021,20(1):28-32. doi: 10.1109/LAWP.2020.3037718
    [20] DUAN Y, LIANG Q, YANG Z, et al. A wide-angle broadband electromagnetic absorbing metastructure using 3D printing technology[J]. Materials & Design,2021,208:109900.
    [21] SOBHA A, SREEKALA P, NARAYANANKUTTY S. Electrical, thermal, mechanical and electromagnetic interference shielding properties of PANI/FMWCNT/TPU composites[J]. Progress in Organic Coatings,2017,113:168-174. doi: 10.1016/j.porgcoat.2017.09.001
    [22] QUAN B, LIANG X, JI G, et al. Dielectric polarization in electromagnetic wave absorption: Review and perspec-tive[J]. Journal of Alloys and Compounds,2017,728:1065-1075. doi: 10.1016/j.jallcom.2017.09.082
    [23] LIU X, ZHANG S, LUO H, et al. Temperature-insensitive microwave absorption of TiB2-Al2O3/MgAl2O4 ceramics based on controllable electrical conductivity[J]. Science China Technological Sciences,2021,64(6):1250-1263. doi: 10.1007/s11431-020-1776-3
    [24] LEI L, YAO Z, ZHOU J, et al. 3D printing of carbon black/polypropylene composites with excellent microwave absorption performance[J]. Composites Science and Technology,2020,200:108479. doi: 10.1016/j.compscitech.2020.108479
    [25] JOHANSSON M, HOLLOWAY C L, KUESTER E F. Effective electromagnetic properties of honeycomb composites, and hollow-pyramidal and alternating-wedge absorbers[J]. IEEE Transactions on Antennas and Propagation,2005,53(2):728-736. doi: 10.1109/TAP.2004.841320
    [26] 熊益军, 王岩, 王强, 等. 一种基于3D打印技术的结构型宽频吸波超材料[J]. 物理学报, 2018, 67(8):084202. doi: 10.7498/aps.67.20172262

    XIONG Yijun, WANG Yan, WANG Qiang, et al. Structural broadband absorbing metamaterial based on three-dimensional printing technology[J]. Acta Physica Sinica,2018,67(8):084202(in Chinese). doi: 10.7498/aps.67.20172262
    [27] YANG Z, LIANG Q, DUAN Y, et al. A 3D-printed lightweight broadband electromagnetic absorbing metastructure with preserved high-temperature mechanical pro-perty[J]. Composite Structures,2021,274:114330. doi: 10.1016/j.compstruct.2021.114330
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  973
  • HTML全文浏览量:  450
  • PDF下载量:  58
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-06
  • 修回日期:  2022-08-12
  • 录用日期:  2022-08-18
  • 网络出版日期:  2022-09-01
  • 刊出日期:  2023-06-15

目录

    /

    返回文章
    返回