留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

聚丙烯酸-Al3+/壳聚糖复合双网络水凝胶的制备与性能

鲁程程 于振坤 杨园园 张玉红

鲁程程, 于振坤, 杨园园, 等. 聚丙烯酸-Al3+/壳聚糖复合双网络水凝胶的制备与性能[J]. 复合材料学报, 2021, 39(0): 1-10
引用本文: 鲁程程, 于振坤, 杨园园, 等. 聚丙烯酸-Al3+/壳聚糖复合双网络水凝胶的制备与性能[J]. 复合材料学报, 2021, 39(0): 1-10
Chengcheng LU, Zhengkun YU, Yuanyuan YANG, Yuhong ZHANG. Preparation and performances of polyacrylic acid-Al3+/chitosan composite double network hydrogel[J]. Acta Materiae Compositae Sinica.
Citation: Chengcheng LU, Zhengkun YU, Yuanyuan YANG, Yuhong ZHANG. Preparation and performances of polyacrylic acid-Al3+/chitosan composite double network hydrogel[J]. Acta Materiae Compositae Sinica.

聚丙烯酸-Al3+/壳聚糖复合双网络水凝胶的制备与性能

基金项目: 湖北省高等学校优秀中青年创新团队项目:功能涂料研发(T201801)资助
详细信息
    通讯作者:

    张玉红,博士,硕士生导师,研究方向为功能高分子 E-mail:zhangyuhong@hubu.edu.cn

  • 中图分类号: O631

Preparation and performances of polyacrylic acid-Al3+/chitosan composite double network hydrogel

  • 摘要: 水凝胶材料具有独特的仿生结构、性能以及生物相容性,在可穿戴应变传感器中的应用越来越广泛。然而,制备出具有良好的力学性能和高电导率的水凝胶传感器仍然是一项很大的挑战。本文通过简单的两步法,制备了完全物理交联的、高强度和敏感性的聚丙烯酸-Al3+/壳聚糖复合双网络水凝胶传感器。首先将壳聚糖(CS),聚丙烯酸(PAA)和离子交联剂Al3+在水中物理混合为预凝胶,然后用预凝胶进行无机盐溶液浸泡而制备出所提出的水凝胶传感器。所得的离子水凝胶传感器显示出优异的力学性能(抗拉强度高达765.4 kPa,断裂伸长率至1025%,韧性为4.13 MJ/m³)。同时,基于该水凝胶应变传感器表现出较出色的拉伸灵敏度(灵敏因子GF约为1.54),使其能够重复稳定地检测人体大应变和微小应变。因此,通过金属盐的作用引入物理交联网络可以提高水凝胶的性能,为多功能材料的设计以及在电子皮肤、可穿戴设备和生物传感器上的应用提供了新的视角。

     

  • 图  1  聚丙烯酸-Al3+/壳聚糖单网络(PAA-Al3+/CS SN)和聚丙烯酸-Al3+/壳聚糖复合双网络(PAA-Al3+/CS DN)水凝胶制备过程示意图

    Figure  1.  Schematic illustration of the preparation process for the polyacrylic acid-Al3+/chitosan composite single network hydrogel (PAA-Al3+/CS SN) and polyacrylic acid-Al3+/chitosan composite double network hydrogel (PAA-Al3+/CS DN) hydrogel

    图  2  (a) PAA-Al3+/CS SN和PAA-Al3+/CS DN水凝胶的典型拉伸应力-应变曲线;(b) PAA-Al3+/CS SN和PAA-Al3+/CS DN水凝胶的韧性和应力值

    Figure  2.  (a) Typically tensile curves and (b) the corresponding toughness and stress of the PAA-Al3+/CS SN and PAA-Al3+/CS DN hydrogels

    图  3  PAA-Al3+/CS SN和PAA-Al3+/CS DN水凝胶的储能模量(G')和损耗模量(G'')与剪切应变(γ) (a)和角频率(b)的关系

    Figure  3.  Storage modulus (G') and loss modulus (G'') versus shear strain (γ) (a) and angular frequency (b) for the PAA-Al3+/CS SN and PAA-Al3+/CS DN hydrogels

    图  4  (a) PAA-Al3+/CS SN水凝胶的扫描电镜(SEM)图像;(b) PAA-Al3+/CS DN SEM图像

    Figure  4.  Scanning electron microscope (SEM) image of PAA-Al3+/CS SN hydrogel (a) and PAA-Al3+/CS DN hydrogel (b)

    图  5  不同AlCl3浓度的PAA-Al3+/CS DN水凝胶的特征性应力-应变拉伸曲线(a)和相应应力和韧性数值(b)

    Figure  5.  Typically tensile curves (a) and corresponding stress and toughness (b) of the PAA-Al3+/CS DN hydrogels with different AlCl3 concentration

    图  6  (a)不同浸泡时间下得到的PAA-Al3+/CS DN水凝胶的应力-应变曲线;(b)水凝胶相应的应力和韧性数值

    Figure  6.  Typically tensile curves (a) and corresponding stress and toughness (b) of the PAA-Al3+/CS DN hydrogels with different soaking time

    图  7  PAA-Al3+/CS DN水凝胶在不同静置时间下的自恢复性能(a);拉伸应力和耗散能随时间延长的恢复率(b);连续十次的循环拉伸和松弛曲线(c);每次循环中相应的耗散能(d)

    Figure  7.  (a) Self-recovery properties of the PAA-Al3+/CS DN hydrogels in different resting times; (b) Time-dependent recovery efficiency of tensile stress and hysteresis energy; (c) Ten continuous tension and relaxation cycles of the PAA-Al3+/CS DN hydrogels; (d) Corresponding dissipated energy in every cycle

    图  8  PAA-Al3+/CS DN水凝胶传感器的机电性能:(a)相对电阻变化(ΔR/R0)与应变的关系图;(b)PAA-Al3+/CS DN水凝胶传感器对重复的大应变(200%、300%)的实时响应信号;(c)PAA-Al3+/CS DN水凝胶传感器对微小应变(1%、2%、3%、4%和 5%)的实时响应信号;(d)微小应变下的灵敏因子(GF)

    Figure  8.  Electromechanical properties of PAA-Al3+/CS DN hydrogel sensors: (a) Plot of the relative resistance variation (ΔR/R0) versus strain; (b) and (c) Real-time response signals of the synthesized hydrogel sensors to repeated large strains (400%, 500%) and subtle strains (1%, 2%, 3%, 4% and 5%), respectively; (d) Gauge factor (GF) of subtle strains.

    图  9  (a)PAA-Al3+/CS DN水凝胶传感器在不同速率下被循环拉伸至 100%时的ΔR/R0(%)曲线图;(b)100%恒定应变下对于200次循环拉伸和释放的响应信号

    Figure  9.  (a) ΔR/R0 (%) of the PAA-Al3+/CS DN hydrogel sensors when stretched to 100% at different rate; (b) Response of the synthesized PAA-Al3+/CS DN hydrogel sensors to repeated stretching and releasing of 100% strain for 200 cycles

    图  10  PAA-Al3+/CS DN水凝胶传感器贴附于人体不同关节的实时相对电阻变化:(a)指关节;(c)腕关节;(d)肘关节;(e)膝关节

    Figure  10.  Real-time relative resistance variations of the PAA-Al3+/CS DN hydrogel sensors attachedon the different body joints: (a) finger joint; (b) wrist joint; (c) elbow joint; (d) knee joint

  • [1] SUN H, ZHAO Y, WANG C, et al. Ultra-Stretchable, durable and conductive hydrogel with hybrid double network as high performance strain sensor and stretchable triboelectric nanogenerator[J]. Nano Energy,2020,76:105035. doi: 10.1016/j.nanoen.2020.105035
    [2] CHANG Q, DARABI M A, LIU Y, et al. Hydrogels from natural egg white with extraordinary stretchability, direct-writing 3D printability and self-healing for fabrication of electronic sensors and actuators[J]. Journal of Materials Chemistry A,2019,7(42):24626-24640. doi: 10.1039/C9TA06233E
    [3] BARI P, JALILI-FIROOZINEZHAD S, RAJABI-ZELETI S, et al. Electrically conductive gold nanoparticle-chitosan thermosensitive hydrogels for cardiac tissue engineering[J]. Materials Science and Engineering:C,2016,63:131-141. doi: 10.1016/j.msec.2016.02.056
    [4] KOUSER R, VASHIST A, ZAFARYAB M, et al. Biocompatible and mechanically robust nanocomposite hydrogels for potential applications in tissue engineering[J]. Materials Science and Engineering:C,2018,84:168-179. doi: 10.1016/j.msec.2017.11.018
    [5] 佘小红, 杜娟, 朱雯莉. 高强度聚苯胺-聚丙烯酸/聚丙烯酰胺导电水凝胶的制备与性能[J]. 复合材料学报, 2021, 38(4):1223-1230.

    SHE X H, DU J, ZHU W L. Preparation and properties of strong polyaniline- polyacrylic acid/ polyacrylamide conductive hydrogel[J]. Acta Materiae Compositae Sinica,2021,38(4):1223-1230(in Chinese).
    [6] CAI F, YI C, LIU S, et al. Ultrasensitive, passive and wearable sensors for monitoring human muscle motion and physiological signals[J]. Biosensors and Bioelectronics,2016,77:907-913. doi: 10.1016/j.bios.2015.10.062
    [7] YAN C, WANG J, KANG W, et al. Highly stretchable piezoresistive graphene-nanocellulose nanopaper for strain sensors[J]. Advanced Materials,2014,26(13):2022-2027. doi: 10.1002/adma.201304742
    [8] ZHAO L, REN Z, LIU X, et al. A Multifunctional, self-healing, self-adhesive, and conductive sodium alginate/poly (vinyl alcohol) composite hydrogel as a flexible strain sensor[J]. ACS Applied Materials & Interfaces,2021,13(9):11344-11355.
    [9] DING H, LIANG X, WANG Q, et al. A semi-interpenetrating network ionic composite hydrogel with low modulus, fast self-recoverability and high conductivity as flexible sensor[J]. Carbohydrate Polymers,2020,248:116797. doi: 10.1016/j.carbpol.2020.116797
    [10] MATSUDA T, KAWAKAMI R, NAMBA R, et al. Mechanoresponsive self-growing hydrogels inspired by muscle training[J]. Science,2019,363(6426):504-508. doi: 10.1126/science.aau9533
    [11] WANG T, REN X, BAI Y, et al. Adhesive and tough hydrogels promoted by quaternary chitosan for strain sensor[J]. Carbohydrate Polymers,2021,254:117298. doi: 10.1016/j.carbpol.2020.117298
    [12] ZHANG J, CHEN L, SHEN B, et al. Highly stretchable and self-healing double network hydrogel based on polysaccharide and polyzwitterion for wearable electric skin[J]. Polymer,2020:122381.
    [13] LIU H, WANG X, C Y, et al. Freezing-tolerant, highly sensitive strain and pressure sensors assembled from ionic conductive hydrogels with dynamic cross-links[J]. ACS Applied Materials & Interfaces,2020,11(25):24140-24151.
    [14] XU J, JIN R, DUAN L, et al. Tough, adhesive and conductive polysaccharide hydrogels mediated by ferric solution[J]. Carbohydrate Polymers,2019,211:1-10. doi: 10.1016/j.carbpol.2019.01.091
    [15] TANG L, LIAO S, QU J. Metallohydrogel with tunable fluorescence, high stretchability, shape-memory, and self-healing properties[J]. ACS Applied Materials & Interfaces,2019,11(29):26346-26354.
    [16] ZHOU Y, WAN C, YANG Y, et al. Highly stretchable, elastic, and ionic conductive hydrogel for artificial soft electronics[J]. Advanced Functional Materials,2019,29(1):1806220. doi: 10.1002/adfm.201806220
    [17] YANG Y, WANG X, YANG F, et al. A universal soaking strategy to convert composite hydrogels into extremely tough and rapidly recoverable double-network hydrogels[J]. Advanced Materials,2016,28(33):7178-7184. doi: 10.1002/adma.201601742
    [18] PAN S, XIA M, LI H, et al. Transparent, high-strength, stretchable, sensitive and anti-freezing poly (vinyl alcohol) ionic hydrogel strain sensors for human motion monitoring[J]. Journal of Materials Chemistry C,2020,8(8):2827-2837. doi: 10.1039/C9TC06338B
    [19] YANG T, WANG M, JIA F, et al. Thermo-responsive shape memory sensors based on tough, remolding and anti-freezing hydrogels[J]. Journal of Materials Chemistry C,2020,8(7):2326-2335. doi: 10.1039/C9TC05804D
    [20] GU S, CHENG G, YANG T, et al. Mechanical and rheological behavior of hybrid cross-linked polyacrylamide /cationic micelle hydrogels[J]. Macromolecular Materials and Engineering,2017,302(12):1700402. doi: 10.1002/mame.201700402
    [21] CUI W, JI J, CAI Y F, et al. Robust, anti-fatigue, and self-healing graphene oxide/hydrophobically associated composite hydrogels and their use as recyclable adsorbents for dye wastewater treatment[J]. Journal of Materials Chemistry A,2015,3(33):17445-17458. doi: 10.1039/C5TA04470G
    [22] CUI C, SHAO C, MENG L, et al. High-strength, self-adhesive, and strain-sensitive chitosan/ poly(acrylic acid) double-network nanocomposite hydrogels fabricated by salt-soaking strategy for flexible sensors[J]. ACS Applied Materials & Interfaces,2019,11(42):39228-39237.
    [23] LIU Y, CHEN Y, ZHAO Y, et al. Superabsorbent sponge and membrane prepared by polyelectrolyte complexation of carboxymethyl cellulose/hydroxyethyl cellulose-Al3+[J]. Bioresources,2015,10(4):6479-6495.
    [24] JIANG X, XIANG N, WANG J, et al. Preparation and characterization of hybrid double network chitosan/poly (acrylic amide-acrylic acid) high toughness hydrogel through Al3+ crosslinking[J]. Carbohydrate Polymers,2017,173:701-706. doi: 10.1016/j.carbpol.2017.06.003
    [25] YIN Y Y, LI X, HU Z Y, et al. An inorganic cross-linked quadruple shape memory hydrogel with high mechanical performance[J]. Polymer Engineering & Science,2020,60(11):2724-2734.
    [26] ZHOU X, LI C, ZHU L, et al. Engineering hydrogels by soaking: from mechanical strengthening to environmental adaptation[J]. Chemical Communications,2020,56(89):13731-13747. doi: 10.1039/D0CC05130F
    [27] PAN S, XIA M, FANG Z, et al. High-strength, rapidly self-recoverable, and antifatigue nano-SiO2 /poly(acrylamide-Lauryl methacrylate) composite hydrogels[J]. Macromolecular Materials and Engineering,2019,304(8):1900130. doi: 10.1002/mame.201900130
    [28] QIAO H, QI P, ZHANG X, et al. Multiple weak H-bonds lead to highly sensitive, stretchable, self-adhesive, and self-healing ionic sensors[J]. ACS Applied Materials & Interfaces,2019,11(8):7755-7763.
    [29] ZHANG Q, LIU X, REN X, et al. Nucleotide-regulated tough and rapidly self-recoverable hydrogels for highly sensitive and durable pressure and strain sensors[J]. Chemistry of Materials,2019,31(15):5881-5889. doi: 10.1021/acs.chemmater.9b02039
    [30] GAO J, WANG L, GUO Z, et al. Flexible, superhydrophobic, and electrically conductive polymer nanofiber composite for multifunctional sensing applications[J]. Chemical Engineering Journal,2020,381:122778. doi: 10.1016/j.cej.2019.122778
    [31] ZHANG J, CHEN L, SHEN B, et al. Highly transparent, self-healing, injectable and self-adhesive chitosan /polyzwitterion-based double network hydrogel for potential 3D printing wearable strain sensor[J]. Materials Science and Engineering:C,2020,117:11129.
  • 加载中
计量
  • 文章访问数:  213
  • HTML全文浏览量:  96
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-26
  • 录用日期:  2021-11-10
  • 修回日期:  2021-11-01
  • 网络出版日期:  2021-12-11

目录

    /

    返回文章
    返回