留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水泥基复合材料加固小偏心受压钢筋混凝土柱承载力

王新玲 李世伟 罗鹏程 范家俊

王新玲, 李世伟, 罗鹏程, 等. 水泥基复合材料加固小偏心受压钢筋混凝土柱承载力[J]. 复合材料学报, 2023, 40(3): 1773-1784. doi: 10.13801/j.cnki.fhclxb.20220513.002
引用本文: 王新玲, 李世伟, 罗鹏程, 等. 水泥基复合材料加固小偏心受压钢筋混凝土柱承载力[J]. 复合材料学报, 2023, 40(3): 1773-1784. doi: 10.13801/j.cnki.fhclxb.20220513.002
WANG Xinling, LI Shiwei, LUO Pengcheng, et al. Bearing capacity of reinforced concrete columns strengthened by engineered cementitious composite under small eccentric compression load[J]. Acta Materiae Compositae Sinica, 2023, 40(3): 1773-1784. doi: 10.13801/j.cnki.fhclxb.20220513.002
Citation: WANG Xinling, LI Shiwei, LUO Pengcheng, et al. Bearing capacity of reinforced concrete columns strengthened by engineered cementitious composite under small eccentric compression load[J]. Acta Materiae Compositae Sinica, 2023, 40(3): 1773-1784. doi: 10.13801/j.cnki.fhclxb.20220513.002

水泥基复合材料加固小偏心受压钢筋混凝土柱承载力

doi: 10.13801/j.cnki.fhclxb.20220513.002
基金项目: 国家自然科学基金面上项目(51879243);国家自然科学基金青年项目(52108183);中国博士后科学基金资助项目(2021TQ0302);郑州大学青年人才企业合作创新团队项目(32320407)
详细信息
    通讯作者:

    范家俊,博士,讲师,研究方向为新型复合材料性能及结构加固 Email:jiajun.fan@zzu.edu.cn

  • 中图分类号: TU528.57

Bearing capacity of reinforced concrete columns strengthened by engineered cementitious composite under small eccentric compression load

Funds: National Natural Science Foundation of China (51879243); National Natural Science Foundation of China (52108183); China Postdoctoral Science Foundation (2021TQ0302); Zhengzhou University Young Talents Enterprise Cooperative Team Innovation Project (32320407)
  • 摘要: 通过对工程水泥基复合材料(ECC)加固钢筋混凝土(RC)柱和未加固RC柱进行小偏心受压试验,研究ECC加固RC柱小偏心受压性能。试验结果表明,ECC加固层能有效约束核心混凝土;与未加固柱相比,加固柱的裂缝细而密,达到峰值荷载时受压区ECC尚未被压碎,破坏过程比较平缓,有较好的完整性,并表现出一定的延性特征;相对偏心距相同时,加固柱的开裂荷载、峰值荷载及延性相比未加固柱分别提高了107%~236%、45%~159%、37.4%~41.3%。依据试验结果,绘制出各加固柱跨中荷载-挠度曲线,可分为4个阶段:弹性阶段、裂缝稳定扩展阶段、最大荷载阶段及下降段。随着加固层厚度的增大,相同荷载下ECC竖向应变及钢筋应变越小;随着相对偏心距的增大,相同荷载下ECC竖向应变及钢筋应变越大。基于混凝土结构理论及力学原理,分析ECC加固层对核心混凝土柱的约束机制,提出ECC约束混凝土抗压强度和峰值应变的表达式,推导出加固柱受压承载力计算公式,承载力计算值与试验值相对误差在10%以内,二者吻合良好,为ECC加固混凝土柱在实际工程中的应用提供理论参考。

     

  • 图  1  水泥基复合材料(ECC)加固钢筋混凝土(RC)柱基本尺寸及截面配筋详图

    Figure  1.  Basic dimensions and section reinforcement details of reinforced concrete (RC) columns strengthened by engineered cementitious composite (ECC)

    H—Specimen height; b—Section width of the RC column; h —Section height of RC column; —HRB400 grade rebar

    图  2  ECC加固RC柱示意图

    Figure  2.  Schematic diagram of RC columns strengthened by ECC

    图  3  ECC典型受拉应力-应变曲线

    Figure  3.  Typical tensile stress-strain curve of ECC

    图  4  ECC加固RC柱加载装置示意图

    Figure  4.  Schematic diagram of ECC reinforced RC column loading device

    LVDT—Linear variable differential transformer

    图  5  未加固RC柱加载及破坏形态

    Figure  5.  Unreinforced RC column loading setup and failure model

    图  6  典型ECC加固RC柱裂缝发展分布及破坏图

    Figure  6.  Photograph of crack development and distribution diagram of typical RC columns strengthened by ECC

    图  7  ECC加固RC柱荷载-跨中挠度曲线

    Figure  7.  Load-mid-span deflection curves of RC columns strengthened by ECC

    图  8  ECC加固RC柱荷载-纵筋应变曲线

    Figure  8.  Load-longitudinal reinforcement strain curves of RC columns strengthened by ECC

    图  9  ECC加固RC柱荷载-ECC(混凝土)竖向应变曲线

    Figure  9.  Load-ECC vertical strain curves of RC columns strengthened by ECC

    图  10  ECC加固RC柱的延性指标定义

    Figure  10.  Definition of ductility index of ECC strengthened RC columns

    $\varDelta _y $—Yield displacement; $\varDelta _u $—Ultimate displacement; μ—Ratio of the ultimate displacement to the yield displacement; Nmax—Maximum load

    图  11  ECC加固RC柱沿跨中截面的应变分布

    Figure  11.  Strain distribution along the mid-span section of RC columns strengthened by ECC

    图  12  ECC加固RC柱的开裂及峰值荷载与加固层厚度的关系曲线

    Figure  12.  Relationship between cracking and peak load of RC columns reinforced with ECC and the thickness of reinforcement layer

    图  13  ECC加固RC柱荷载-ECC横向应变曲线

    Figure  13.  Load-ECC transverse strain curves of RC columns strengthened by ECC

    图  14  ECC加固RC柱约束混凝土截面应力分析

    Figure  14.  Stress analysis of confined concrete section of RC column strengthened by ECC

    $ f_{{\rm{j}}} $, $ f_{{\rm{k}}} $—Maximum lateral restraint force in the width and height directions of the section, respectively; $ f_{\text {et }} $—ECC horizontal tensile force of the reinforcement layer

    图  15  ECC加固RC柱小偏心受压计算模型

    Figure  15.  Calculation model of ECC reinforced RC column under small eccentric compression

    h0, h1,0—Distance between the tension side reinforcement and the compression side edge of the concrete column and the compression side edge of the reinforced column; $A_{{\rm{s}}}$, $A_{{\rm{s}}}^{\prime}$—Cross-section area of reinforcement on the tension side and compression side; e—Distance between the point of bearing capacity and the resultant point of longitudinal tension reinforcement; $ \sigma_{\mathrm{s}} $, $\sigma_{{\rm{s}}}^{\prime}$—Stress value of reinforcement on the tension side and compression side; εs—Elastic modulus of reinforcement; fcc—ECC axial compressive strength; x—Equivalent rectangular compression zone height; xc—Section actual compression zone height; εec—ECC strain on compression side; εcc—ECC confined peak compressive strain of concrete; ε's—Reinforcement strain on the compression side; b1, h1—Width and height of reinforced column section; N—Bearing capacity of reinforced column; α1—Equivalent rectangular stress diagram coefficient of compression zone; as, a's—Distance from the center of tension or compression bar to the tension or compression edge of concrete section

    图  16  ECC加固RC柱界限破坏截面应变分布

    Figure  16.  Strain distribution of the balance failure section of ECC reinforced RC column

    $ \varepsilon_{\mathrm{y}} $—Yield tensile strain of the steel bar; $x_{{\rm{cb}}}$—Actual height of the compression zone of the limit failure

    表  1  ECC加固RC柱试件参数

    Table  1.   Test parameters of RC columns strengthened by ECC

    Groupb1×h1/mm×mmH/mme0/mmt/mm
    RC200×25012000.22h1 0
    ECC-RCA1250×30012000.22h125
    ECC-RCA2270×32012500.22h135
    ECC-RCA3290×34013500.22h145
    ECC-RCB1250×30012000.3h125
    Notes: h1—Section height of the reinforced column; b1—Section width of the reinforced column; e0—Eccentricity; t—Thickness of ECC reinforcement layer; A and B—Relative eccentricity of 0.22 and 0.3, respectively; 1, 2 and 3—Thickness of the reinforcement layer of 25 mm, 35 mm and 45 mm, respectively.
    下载: 导出CSV

    表  2  ECC质量比

    Table  2.   ECC mass ratio

    CementSandFly ashMicro-silicon powderWaterWater reducerPVA fiberThickener
    10.430.0731.020.040730.0720.00182
    下载: 导出CSV

    表  3  聚乙烯醇(PVA)纤维性能参数

    Table  3.   Performance index of polyvinyl alcohol (PVA) fiber

    Diameter/μmLength/mmTensile strength/MPaModulus of elasticity/GPaFracture elongation/%Density/(${\rm{g}}\cdot $cm−3)
    40121560416.51.3
    下载: 导出CSV

    表  4  ECC抗压和抗拉试验结果

    Table  4.   ECC compressive and tensile test results

    GroupCompressive
    ultimate load/kN
    fe/MPafet/MPaUltimate
    tensile strain/%
    ECC-RCA1194.538.73.653.12
    ECC-RCA2187.737.53.633.19
    ECC-RCA3192.938.63.723.26
    ECC-RCB1181.836.43.703.18
    Notes: fe—Compressive strength of ECC; fet—Tensile strength of ECC.
    下载: 导出CSV

    表  5  ECC加固RC柱主要试验结果

    Table  5.   Main test results of RC columns strengthened by ECC

    Groupfco/MPafe/MPaNk/kNncrNp/kNn0De/mmnde
    RC29.61211.00 6001.002.161.00
    ECC-RCA128.438.72512.07 8681.453.821.77
    ECC-RCA229.837.53522.9113012.173.981.84
    ECC-RCA329.938.64063.3615522.594.211.95
    ECC-RCB129.735.51811.46 6611.106.032.79
    Notes: fco—Axial compressive strength of concrete; Nk—Cracking load; ncr—Cracking load ratio of reinforced column and unreinforced column; Np—Peak load; n0—Peak load ratio between the reinforced column and the unreinforced column; De—Mid-span deflection corresponding to peak load; nde—Deflection ratio corresponding to the peak load of the reinforced column and the unreinforced column.
    下载: 导出CSV

    表  6  ECC加固RC柱延性指标的对比

    Table  6.   Comparison of ductility indexes of RC columns strengthened by ECC

    Group$ \varDelta _{\rm{y}} /{\rm{mm}}$$ \varDelta _{\rm{u}} /{\rm{mm}}$$ \mu =\varDelta _{\rm{u}}/\varDelta _{\rm{y}} $$ n_\mu$
    RC1.392.161.551.00
    ECC-RCA12.164.732.191.413
    ECC-RCA22.224.802.161.394
    ECC-RCA32.284.852.131.374
    ECC-RCB13.318.012.421.561
    Note: ${n_\mu } $—Ratio of the ductility coefficient between the reinforced column and the unreinforced column.
    下载: 导出CSV

    表  7  ECC加固RC柱峰值应变及约束效应系数

    Table  7.   Peak strain and restraint effect coefficient of ECC-reinforced RC columns

    Group$\varepsilon_{{\rm{s}}}'$/%$\varepsilon_{{\rm{ec}}}$/%$a_{\rm{s}}'$/mm$ t$/mm$\varepsilon_{{\rm{cc}}}$/%k2
    ECC-RCA10.2080.217240250.21472.629
    ECC-RCA20.1840.247740350.2242.634
    ECC-RCA30.17020.283640450.22682.635
    Note: k2—Strain constraint effect coefficient.
    下载: 导出CSV

    表  8  ECC加固RC柱承载力计算值与试验值比较

    Table  8.   Comparison between the calculated and experimental values of the bearing capacity of ECC-reinforced RC columns

    GroupNp-theo/kNNp-test/kNNp-theo/Np-test
    ECC-RCA1 913 868 1.052
    ECC-RCA2 1236 1301 0.950
    ECC-RCA3 1471 1552 0.948
    ECC-RCB1 698 661 1.056
    B2 1505 1621 0.928
    Notes: Np-theo—Calculated value; Np-test—Test value.
    下载: 导出CSV
  • [1] LI V, WANG S, WU C. Tensile strain-hardening behavior of PVA-ECC[J]. ACI Materials Journal,2001,98(6):483-492.
    [2] WU C, LEUNG C K Y, LI V C. Derivation of crack bridging stresses in engineered cementitious composites under combined opening and shear displacements[J]. Cement and Concrete Research,2018,107:253-263. doi: 10.1016/j.cemconres.2018.02.027
    [3] 吴畅, 王欣汝, 许铭纹, 等. 基于梁理论的ECC拉伸应变硬化与多缝开裂行为的数值模拟[J]. 复合材料学报, 2022, 39(11):5216-5227.

    WU Chang, WANG Xinru, XU Mingwen, et al. Numerical simulation of the tensile strain hardening and multiple cracking behavior of ECC based on beam theory[J]. Acta Materiae Compositae Sinica,2022,39(11):5216-5227(in Chinese).
    [4] 王新玲, 李苗浩夫, 李可. ECC圆柱体轴心受压性能试验研究[J]. 建筑科学, 2019, 35(5):59-63.

    WANG Xinling, LI Miaohaofu, LI Ke. Experimental research on the axial compression performance of ECC cylinders[J]. Building Science,2019,35(5):59-63(in Chinese).
    [5] KHAN M K I, RANA M M, ZHANG Y X, et al. Behaviour of engineered cementitious composite-encased stub concrete columns under axial compression[J]. Magazine of Concrete Research,2020,72(19):984-1005. doi: 10.1680/jmacr.19.00111
    [6] MECHTCHERINE V, SILVA F D A, MÜLLER S, et al. Coupled strain rate and temperature effects on the tensile behavior of strain-hardening cement-based composites (SHCC) with PVA fibers[J]. Cement and Concrete Research,2012,42(11):1417-1427. doi: 10.1016/j.cemconres.2012.08.011
    [7] FISCHER G, LI V C. Effect of matrix ductility on deformation behavior of steel reinforced ECC flexural members under reversed cyclic loading conditions[J]. ACI Structural Journal,2002,99(6):781-790.
    [8] 王新玲, 李赟璞, 李苗浩夫, 等. 高强不锈钢绞线网增强ECC加固RC短柱轴心受压试验研究[J]. 复合材料学报, 2022, 39(5): 2308-2317.

    WANG Xinling, LI Yunpu, LI Miaohaofu, et al. Study on the compressive behavior of RC short columns strengthened with high-strength stainless steel wire strand mesh and ECC[J]. Acta Materiae Compositae Sinica, 2022, 39(5): 2308-2317(in Chinese).
    [9] Al-SIBAHY A, MASHSHAY S. Development of hybrid ECC columns subjected to concentric and eccentric loading[J]. Structures,2020,72(28):309-320. doi: 10.1016/j.istruc.2020.08.080
    [10] 袁超. 聚乙烯醇纤维水泥砂浆钢筋网加固RC偏压柱试验研究[D]. 长沙: 湖南大学, 2012.

    YUAN Chao. The research on bearing capaxity of PVA-ECC reinforced concrete square column subjected to eccentric load[D]. Changsha: Hunan University, 2012(in Chinese).
    [11] 崔涛, 何浩祥, 闫维明, 等. ECC与既有混凝土结合面的抗剪性能[J]. 建筑材料学报, 2020, 23(5):1030-1037. doi: 10.3969/j.issn.1007-9629.2020.05.006

    CUI Tao, HE Weixiang, YAN Weiming, et al. Shear resistance property of ECC-existing concrete interface[J]. Jour-nal of Building Materials,2020,23(5):1030-1037(in Chinese). doi: 10.3969/j.issn.1007-9629.2020.05.006
    [12] 蔡景明, 潘金龙, 苏浩. 钢筋增强 ECC-钢管混凝土组合柱抗震性能试验及其数值模拟[J]. 建筑结构学报, 2020, 41(7):55-62.

    CAI Jingming, PAN Jinlong, SU Hao. Experimental and analytical research on seismic behavior of ECC-encased concrete-filled steel tubular columns[J]. Journal of Building Structures,2020,41(7):55-62(in Chinese).
    [13] 古音, 彭晨星. PVA-ECC加固桥墩抗震性能试验研究[J]. 振动与冲击, 2021, 40(14): 92-99.

    GU Yin, PENG Chenxing, Experimental study on the seismic behavior of bridge piers strengthened with PVA-ECC[J]. Journal of Vibration and Shock, 2021, 40(14): 92-99(in Chinese).
    [14] 赵英驰, 冯锦鹏, 吴祥均. ECC管混凝土短柱轴心受压试验研究[J]. 重庆建筑, 2019, 18(6):28-31. doi: 10.3969/j.issn.1671-9107.2019.06.28

    ZHAO Yingchi, FENG Jinpeng, WU Xiangjun. Experimental research on axial compression of concrete short column of ECC tube[J]. Chongqing Architecture,2019,18(6):28-31(in Chinese). doi: 10.3969/j.issn.1671-9107.2019.06.28
    [15] 江佳斐, 隋凯. 纤维网格增强超高韧性水泥复合材料加固混凝土圆柱受压性能试验[J]. 复合材料学报, 2019, 8(36):1957-1967.

    JIANG Jiafei, SUI Kai. Experimental study of compression performance of concrete cylinder strengthened by textile reinforced engineering cement composites[J]. Acta Mate-riae Compositae Sinica,2019,8(36):1957-1967(in Chinese).
    [16] 龚宏伟, 江世永, 飞渭, 等. ECC结构抗震性能研究进展[J]. 玻璃钢/复合材料, 2019, 6(7):116-124.

    GONG Hongwei, JIANG Shiyong, FEI Wei, et al. Progress of study on seismic performance of ECC structures[J]. Fiber Reinforced Plastics/Composites,2019,6(7):116-124(in Chinese).
    [17] 中华人民共和国住房和城乡建设部. 混凝土结构加固设计规范: GB 50367—2013[S]. 北京: 中国建筑工业出版社, 2014.

    Ministry of Housing and Urban Rural Development of the People’s Republic of China. Code for design of strengthening concrete structure: GB 50367—2013[S]. Beijing: China Architecture and Building Press, 2014(in Chinese).
    [18] 刘伟康. ECC受压和受拉性能及本构模型研究[D]. 郑州: 郑州大学, 2018.

    LIU Weikang. Study on the Compression and tensile properties and the constitutive model of ECC[D]. Zhengzhou: Zhengzhou University, 2018(in Chinese).
    [19] 中华人民共和国住房和城乡建设部. 混凝土结构试验方法标准: GB/T 50152—2012[S]. 北京: 中国建筑工业出版社, 2012.

    Ministry of Housing and Urban Rural Development of the People’s Republic of China. Standard for test method of concrete structures: GB/T 50152—2012[S]. Beijing: China Architecture and Building Press, 2012(in Chinese).
    [20] BAYRAK O, SHEIKH S A. Confinement reinforcement design considerations for ductile HSC columns[J]. Journal of Structural Engineering, ASCE,1998,124(9):999-1010. doi: 10.1061/(ASCE)0733-9445(1998)124:9(999)
    [21] 尚守平, 蒋隆敏, 张毛心. 钢筋网水泥复合砂浆加固RC偏心受压柱的试验研究[J]. 建筑结构学报, 2005, 26(2):18-25. doi: 10.3321/j.issn:1000-6869.2005.02.003

    SHANG Shouping, JIANG Longmin, ZHANG Maoxin. Experimental investigation into the strengthening of eccentric compression RC column using composite mortar laminate reinforced with mesh reinforcement[J]. Journal of Building Structures,2005,26(2):18-25(in Chinese). doi: 10.3321/j.issn:1000-6869.2005.02.003
    [22] MANDER J B, PRIESTLEY M J N, PARK R J T. Theoretical stress-strain model for confined concrete[J]. Journal of Structural Engineering, ASCE,1998,114(8):1804-1826.
    [23] 卜良桃, 朱健, 陶剑剑, 等. 活性粉末混凝土加固高强混凝土小偏压柱试验研究[J]. 建筑结构, 2014, 44(11):14-19.

    BU Liangtao, ZHU Jian, TAO Jianjian, et al. Experimental study on high-strength concrete columns reinforced by reactive powder concrete under small eccentric compression[J]. Building Structure,2014,44(11):14-19(in Chinese).
  • 加载中
图(16) / 表(8)
计量
  • 文章访问数:  865
  • HTML全文浏览量:  586
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-01
  • 修回日期:  2022-03-28
  • 录用日期:  2022-05-05
  • 网络出版日期:  2022-05-16
  • 刊出日期:  2023-03-15

目录

    /

    返回文章
    返回