留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于AC729RTM聚酰亚胺复合材料的发动机舱尾区结构研制与验证

张庆茂 金东升 甘建 张朋 包建文

张庆茂, 金东升, 甘建, 等. 基于AC729RTM聚酰亚胺复合材料的发动机舱尾区结构研制与验证[J]. 复合材料学报, 2022, 39(6): 2631-2638. doi: 10.13801/j.cnki.fhclxb.20210816.002
引用本文: 张庆茂, 金东升, 甘建, 等. 基于AC729RTM聚酰亚胺复合材料的发动机舱尾区结构研制与验证[J]. 复合材料学报, 2022, 39(6): 2631-2638. doi: 10.13801/j.cnki.fhclxb.20210816.002
ZHANG Qingmao, JIN Dongsheng, GAN jian, et al. Manufacturing and verification research for engine compartment rear structure based on AC729RTM polyimide composites[J]. Acta Materiae Compositae Sinica, 2022, 39(6): 2631-2638. doi: 10.13801/j.cnki.fhclxb.20210816.002
Citation: ZHANG Qingmao, JIN Dongsheng, GAN jian, et al. Manufacturing and verification research for engine compartment rear structure based on AC729RTM polyimide composites[J]. Acta Materiae Compositae Sinica, 2022, 39(6): 2631-2638. doi: 10.13801/j.cnki.fhclxb.20210816.002

基于AC729RTM聚酰亚胺复合材料的发动机舱尾区结构研制与验证

doi: 10.13801/j.cnki.fhclxb.20210816.002
详细信息
    通讯作者:

    张庆茂,博士,研究员,博士生导师,研究方向为飞机复合材料结构设计 E-mail:qmzhang611@sina.com

  • 中图分类号: TB332

Manufacturing and verification research for engine compartment rear structure based on AC729RTM polyimide composites

  • 摘要: 针对某飞行器钛合金发动机舱尾区结构在应用中存在的结构变形、重量问题及高温环境需求,以耐温等级为350℃的AC729RTM聚酰亚胺树脂基复合材料为设计选材,开展了某飞机发动机舱尾区结构复合材料代替钛合金结构设计,建立了有限元分析模型对复合材料发动机舱尾区结构进行参数分析,最后获取了合理的结构设计参数,最后采用树脂传递模塑成型工艺(RTM)进行了复合材料发动机舱尾区结构制备,同时从静强度试验、结构变形和结构重量三个角度进行了验证评价。结果表明:聚酰亚胺复合材料发动机舱尾区结构经无损检测制件仅局部区域存在小面积孔隙(孔隙率<2%),整个制件的内部质量及外观状态良好;经静强度试验验证,发动机舱尾区结构除局部小范围脱粘外,未出现明显损伤及破坏,符合室温静强度要求;复合材料发动机舱尾区结构外形偏差控制在–0.808~0.664 mm,相比于钛合金结构取得了改善;结构质量相比钛合金减重约27.5%,取得了良好的减重收益。

     

  • 图  1  钛合金发动机舱尾区结构

    Figure  1.  Titanium alloy engine compartment rear structure

    图  2  发动机舱尾区结构尺寸参数

    Figure  2.  Size parameters of engine compartment rear structure

    图  3  ZT7H3198P碳纤维织物/AC729RTM聚酰亚胺树脂复合材料发动机舱尾区结构

    Figure  3.  Composite engine compartment rear structure of ZT7H3198P carbon fiber fabric/AC729RTM polyimide

    图  4  ZT7H3198P/AC729RTM复合材料发动机舱尾区结构有限元模型

    Figure  4.  FE model of composite engine compartment rear structure of ZT7H3198P/AC729RTM

    图  5  ZT7H3198P/AC729RTM复合材料发动机舱尾区结构纵向正应力云图σ1

    Figure  5.  Contour of longitudinal normal stress σ1 of ZT7H3198P/AC729RTM composite engine compartment rear structure

    图  6  ZT7H3198P/AC729RTM复合材料发动机舱尾区结构横向正应力云图σ2

    Figure  6.  Contour of transverse normal stress σ2 of ZT7H3198P/AC729RTM composite engine compartment rear structure

    图  7  AC729RTM的DMA曲线

    Figure  7.  DMA curve of AC729RTM

    图  8  AC729RTM的270℃恒温流变性能

    Figure  8.  Isothermal viscosity of AC729RTM at 270℃

    图  9  发动机舱尾区结构成型模具设计

    Figure  9.  Design of processing mold for engine compartment rear structure

    图  10  发动机舱尾区结构树脂传递模塑成型(RTM)工艺制备流程

    Figure  10.  Resin transfer molding process (RTM) fabrication process of engine compartment rear structure

    图  11  发动机舱尾区结构预成型体制备

    Figure  11.  Preform fabrication of engine compartment rear structure

    图  12  ZT7H3198P/AC729RTM复合材料发动机舱尾区结构制件

    Figure  12.  ZT7H3198P/AC729RTM composite part of engine compartment rear structure

    图  13  发动机舱尾区结构约束与加载方式

    Figure  13.  Constraints and loading of engine compartment rear structure

    图  14  发动机舱尾区结构试件加载示意图

    Figure  14.  Loading schematic diagram of the engine compartment rear structure test

    图  15  发动机舱尾区结构试验后脱粘位置区域

    Figure  15.  Disbonding area of engine compartment rear structure after test

    图  16  发动机舱尾区结构各个测点外形偏差情况

    Figure  16.  Shape deviation of each measuring point of the engine compartment rear structure

    表  1  ZT7H3198P/AC729RTM复合材料发动机舱尾区结构材料力学性能

    Table  1.   Mechanical properties of ZT7H3198P/AC729RTM used for composite engine compartment rear structure

    ParameterValueParameterValue
    E1/GPa67E2/GPa66
    ν120.02G12/GPa4.5
    Xt/MPa790Xc/MPa632
    Yt/MPa709Yc/MPa594
    ρ/(kg·m-3)1550t/mm0.2
    Notes: E1—Warp modulus; E2—Weft modulus; ν12—Poission ratio; G12—In-plane shear modulus; Xt—Warp tensile strength; Xc—Warp compressive strength; Yt—Weft tensile strength; Yc—Weft compressive strength; ρ—Density; t—Thickness.
    下载: 导出CSV

    表  2  ZT7H3198P/AC729RTM复合材料发动机舱尾区结构厚度参数

    Table  2.   Thickness parameters of ZT7H3198P/AC729RTM composite engine compartment rear structure

    Group
    No.
    Skin/mmT-rib/mmΩ-rib/mmMass/
    kg
    11.62210.5
    221.61.610.9
    322211.6
    42.42212.8
    下载: 导出CSV

    表  3  AC729RTM聚酰亚胺树脂性能

    Table  3.   Properties of AC729RTM polyimide

    ItemProperty
    Glass transition temperature Tg (tanδ)409℃
    5% decomposition temperature Td5%542℃
    Process period (η≤1 Pa·s)>8 h
    下载: 导出CSV
  • [1] 陈祥宝. 聚合物基复合材料手册[M]. 北京: 化学工业出版社, 2004: 1-3.

    CHEN Xiangbao. Handbook of polymer matrix composite[M]. Beijing: Chemical Industry Press, 2004: 1-3(in Chinese).
    [2] 邢丽英, 包建文, 礼嵩明. 先进树脂基复合材料发展现状和面临的挑战[J]. 复合材料学报, 2016, 33(7):1327-1338.

    XING Liying, BAO Jianwen, LI Songming. Development status and facting challenge of advanced polymer matrix composites[J]. Acta Materiae Compositae Sinica,2016,33(7):1327-1338(in Chinese).
    [3] 杨乃宾. 新一代大型客机复合材料结构[J]. 航空学报, 2008, 29(3):596-604. doi: 10.3321/j.issn:1000-6893.2008.03.010

    YANG Naibin. Composite structures for new gen eration large commercial[J]. Aeronautica Sinica,2008,29(3):596-604(in Chinese). doi: 10.3321/j.issn:1000-6893.2008.03.010
    [4] HUNTER A B. Quality assurance of PMR-15[J]. Inter SAMPE Symposium and Exhibition,1987:375-389.
    [5] MICHAEL A M, MARY B, MADOR, et al. PMR polyimides with enhanced for high temperature application[C]. Inter SAMPE Symposium and Exhibition. Long Beach, California, 2001: 497-509.
    [6] 张朋, 周立正, 包建文, 等. 耐350℃RTM聚酰亚胺树脂及其复合材料性能[J]. 复合材料学报, 2014, 31(2):345-352.

    ZHANG Peng, ZHOU Lizheng, BAO Jianwen. Properties of 350℃ temperature-resistant RTM polyimide matrix resin and its composites[J]. Acta Materiae Compositae Sinica,2014,31(2):345-352(in Chinese).
    [7] GHOSE S, GANO R J, WARSON K A. Phenylethynyl terminated imide (PETI) composites made by high temperature VARTM[C]//14th European Conference on Composite Materials, Budapest, 2010: 306-315.
    [8] THOMPSON C M, CONNELL J W, HERG P. Adhesive and composite properties of a new Phenylethynyl terminated imide[C]//47th International SAMPE Symposium, Long Beach, California, 2002: 521-527.
    [9] HERGEN P M, SMITH JR J. Chemistry and properties of imide oligomers endcapped with phenylethy-nylphthalic anhydrides[J]. Polymer,1994,35(22):335-347.
    [10] YOKOTA R. Recent trends and space applications of polyimides[J]. Journal of Photopolymer Science and Technol-ogy,1999,12(2):209-216. doi: 10.2494/photopolymer.12.209
    [11] HERGENROTHER P M. The use, design, synthesis, and properties of high performance/high temperature polymers: An overview[J]. High Performance Polymers,2003,15(1):3-45. doi: 10.1177/095400830301500101
    [12] PARAKALAN K, LOU J Z, JAG S, et al. Characterization of fourth-generation high-temperature discontinuous fiber molding compounds[J]. International Journal of Polymer Analysis and Characterization,2009,14:588-599. doi: 10.1080/10236660903225452
    [13] LINCOLN J E, MORGAN R J, CURLISS D B, et al. Effect of matrix chemical structure on the thermo-oxidative stability of addition cure poly(imide siloxane) composites[J]. Polymer Composites, 2008, 29(6): 585–596.
    [14] YANG Jintian, JIN Bin, HUANG Wei, et al. Synthesis and characterization of organsoluble polyimide and copolyimides from alicyclic dianhydride[J]. Chinese Journal of Polyer Science,2007,25(4):409-417. doi: 10.1142/S025676790700228X
    [15] DING Mengxian. Isomeric polyimides[J]. Progress in Polymer Science,2007,32:623-668. doi: 10.1016/j.progpolymsci.2007.01.007
    [16] KASH L Mittal. Polyimides and other high-temperature polymers[M]. Netherlands: VSP/Brill, 2009: 19-31.
    [17] MEADOR M A. Recent advances in the development of processable high temperature polymes[J]. Annual Review of Materials Science,1998,28:599-630. doi: 10.1146/annurev.matsci.28.1.599
    [18] LINCON J E, HOUNT S L, BROWNT J. Aging durability and high temperature mechanical performance of P2SI 900HT composite materials[C]. 39th International SAMPE Technical Conference, Cincinnati, 2007.
    [19] LINCOLN J E, HOUT S, FLAHERTY K, et al. High tempera-ture organic/inorganic addition cure polyimide compo-sites, Part 1: Matrix thermal properties[J]. Journal of Applied Polymer Science, 2008, 107(6): 3557–3567.
    [20] DONGHWAN C, GYEOMO Y. Fluorescence characterization of LaRC PETI-5, BMI, and LaRC PETI-5/BMI blends[J]. Fibers and Polymers,2002,3(2):60-67. doi: 10.1007/BF02875401
    [21] CONNELL J W, SMITH J G, HERGENTHER P M, et al. High temperature transfer molding resins: Laminate properties of PETI-298 and PETI-330[J]. High Performance Polymers,2003,15(4):375. doi: 10.1177/09540083030154001
    [22] CONNELL J W, SMITH J G, HERGENTHER P M, et al. High temperature transfer molding resin: Preliminary compo-site properties of PETI-375[C]//International SAMPE Symposium and Exhibition, Long Beach, California, 2004(5): 16-20.
    [23] 包建文, 陈祥宝. 发动机用耐高温聚酰亚胺树脂基复合材料的研究进展[J]. 航空材料学报, 2012, 32(6):3-12.

    BAO Jianwen, CHEN Xiangbao. Advance in high tempera-ture polyimide resin matrix composites for aeroengine[J]. Journal of Aeronautical Materials,2012,32(6):3-12(in Chinese).
    [24] 王震, 杨慧丽, 益小苏. 苯炔基封端的联苯型聚酰亚胺复合材料[J]. 航空材料学报, 2006, 23(3):1-4. doi: 10.3969/j.issn.1005-5053.2006.03.001

    WANG Zhen, YANG Huili, YI Xiaosu. Biophenyl poly-imide composite endcapped with phenylethynyl[J]. Jour-nal of Aeronautical Materials,2006,23(3):1-4(in Chinese). doi: 10.3969/j.issn.1005-5053.2006.03.001
  • 加载中
图(16) / 表(3)
计量
  • 文章访问数:  651
  • HTML全文浏览量:  347
  • PDF下载量:  57
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-18
  • 修回日期:  2021-06-25
  • 录用日期:  2021-07-23
  • 网络出版日期:  2021-08-16
  • 刊出日期:  2022-06-01

目录

    /

    返回文章
    返回