留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多孔碳负载钌单原子和钌纳米团簇催化剂用于高效析氢反应

李创 王宇 候利强 刘希恩

李创, 王宇, 候利强, 等. 多孔碳负载钌单原子和钌纳米团簇催化剂用于高效析氢反应[J]. 复合材料学报, 2023, 40(4): 2155-2168. doi: 10.13801/j.cnki.fhclxb.20220512.001
引用本文: 李创, 王宇, 候利强, 等. 多孔碳负载钌单原子和钌纳米团簇催化剂用于高效析氢反应[J]. 复合材料学报, 2023, 40(4): 2155-2168. doi: 10.13801/j.cnki.fhclxb.20220512.001
LI Chuang, WANG Yu, HOU Liqiang, et al. Porous carbon supported ruthenium single atom and ruthenium nanoclusters catalysts for efficient hydrogen evolution reaction[J]. Acta Materiae Compositae Sinica, 2023, 40(4): 2155-2168. doi: 10.13801/j.cnki.fhclxb.20220512.001
Citation: LI Chuang, WANG Yu, HOU Liqiang, et al. Porous carbon supported ruthenium single atom and ruthenium nanoclusters catalysts for efficient hydrogen evolution reaction[J]. Acta Materiae Compositae Sinica, 2023, 40(4): 2155-2168. doi: 10.13801/j.cnki.fhclxb.20220512.001

多孔碳负载钌单原子和钌纳米团簇催化剂用于高效析氢反应

doi: 10.13801/j.cnki.fhclxb.20220512.001
基金项目: 山东省泰山学者基金项目 (ts201712045)
详细信息
    通讯作者:

    候利强,博士,研究方向为电催化  Email: houliqiang@qust.edu.cn

    刘希恩,博士,教授,博士生导师,研究方向为电催化  Email: liuxien@qust.edu.cn

  • 中图分类号: TB331;O646

Porous carbon supported ruthenium single atom and ruthenium nanoclusters catalysts for efficient hydrogen evolution reaction

Funds: Taishan Scholar Program of Shandong Province (ts201712045)
  • 摘要: 高效析氢反应(HER)电催化剂的制备对氢能的大规模推广具有重大的意义。本文以羧甲基纤维素钠(CMC-Na)和RuCl3为原料,利用Ru离子与CMC-Na在溶液中配位制备了Ru-CMC-Na水凝胶,随后通过冷冻干燥、高温退火和酸洗制备了多孔碳负载Ru单原子和Ru纳米团簇的催化剂RuSA+NC/C-2。催化剂RuSA+NC/C-2在酸性和碱性电解质中都具有优异的HER活性和稳定性,达到10 mA·cm−2电流密度,所需过电位分别20 mV和23 mV,经过12 h的恒电位测试其活性未见明显衰减。催化剂RuSA+NC/C-2中Ru的含量为5.52wt%,在1 mol/L KOH电解质中,过电位为0.05 V时,催化剂的质量活性是商业Pt/C的5.8倍。通过对催化剂RuSA+NC/C-2的物理表征测试发现,催化剂RuSA+NC/C-2的多孔结构和大比表面积,可以暴露更多的活性位点。Ru单原子与Ru纳米团簇结构提高了Ru原子的利用率。通过XPS分析,Ru与碳载体间存在强相互作用,形成了缺电子态的Ru,从而提高了催化剂的HER活性。

     

  • 图  1  催化剂RuSA+NC/C-2的SEM图像:(a) 低倍;(b) 高倍

    Figure  1.  SEM images of RuSA+NC/C-2: (a) Low-resolution; (b) High-resolution

    RuSA+NC/C-2—Porous carbon supported Ru single atom and Ru nanoclusters

    图  2  催化剂RuSA+NC/C-2的物理表征:(a) XRD图像;((b)~(d)) 高角度环形场暗场扫描透射电镜(HAADF-STEM)图像;((e)、(f)) 高分辨透射电镜图像;(g) HAADF-STEM图像及其对应的原子分辨率EDS元素扫描图像

    Figure  2.  Characterization of RuSA+NC/C-2: (a) XRD pattern; ((b)-(d)) High angle annular dark field image (HAADF)-scanning transmission electron microscope (STEM) images; ((e), (f)) HRTEM images; (g) HAADF-STEM image and corresponding atomic-resolution EDS mapping images

    图  3  催化剂RuSA+NC/C-2的 XPS全谱图

    Figure  3.  XPS survey spectrum of RuSA+NC/C-2

    图  4  (a) RuSA+NC/C-2的拉曼图谱;(b) RuSA+NC/C-2的氮气吸脱附和孔径分布图;(c) RuSA+NC/C-2和商业Ru/C的Ru3p高分辨光电子能谱;(d) RuSA+NC/C-2的C1s+Ru3d高分辨光电子能谱

    Figure  4.  (a) Raman spectrum of RuSA+NC/C-2; (b) N2 adsorption/desorption isotherms and pore size distributions for RuSA+NC/C-2; (c) XPS spectra of Ru3p for RuSA+NC/C-2 and commercial Ru/C; (d) XPS spectrum of C1s+Ru3d for RuSA+NC/C-2

    ID/IG—Intensity ration of D and G band ratio; STP—Standard state: 273.15 K, 100 kPa; SSA—Specific surface area; V—Pore volume; D—Pore diameter

    图  5  (a) RuSA/C、RuSA+NC/C-1、RuSA+NC/C-2和RuSA+NC/C-3的XRD图谱;(b) RuSA/C的HAADF-STEM图像

    Figure  5.  (a) XRD patterns of RuSA/C, RuSA+NC/C-1, RuSA+NC/C-2 and RuSA+NC/C-3; (b) HAADF-STEM image of RuSA/C

    图  6  催化剂RuSA+NC/C-2和对比样品在1 mol/L KOH溶液中的析氢反应(HER)性能:(a) 线性伏安曲线;(b)质量活性;(c) 塔菲尔斜率;(d) 双电层电容值;(e) RuSA+NC/C-2在经过5000圈循环伏安测试前后的线性伏安曲线对比;(f) RuSA+NC/C-2的恒电位稳定性测试

    Figure  6.  Hydrogen evolution reaction (HER) performance of RuSA+NC/C-2 and contrast samples in 1 mol/L KOH: (a) LSV curves; (b) Mass activities; (c) Tafel slopes; (d) Electric double-layer capacitances Cdl; (e) Polarization curves recorded before and after 5000 potential cycles of RuSA+NC/C-2; (f) Chronoamperometric curve of RuSA+NC/C-2

    JanodicJcathodic—Anodic current density minus the cathodic current density at 0.15 V in the cyclic voltammetry curve; M—Noble metal; RHE—Reversible hydrogen electrode

    图  7  催化剂Carbon (a)、RuSA/C (b)、RuSA+NC/C-1 (c)、RuSA+NC/C-2 (d)、RuSA+NC/C-3 (d)和商业Ru/C (f)在1 mol/L KOH电解质中0.1~0.2 V vs RHE电位区间不同扫速的循环伏安曲线

    Figure  7.  CV curves recorded at different scan rates for Carbon (a), RuSA/C (b), RuSA+NC/C-1 (c), RuSA+NC/C-2 (d), RuSA+NC/C-3 (d) and commercial Ru/C (f) in a non-Faradaic potential window from 0.1-0.2 V vs RHE in 1 mol/L KOH

    图  8  商业Pt/C在1 mol/L KOH (a)和0.5 mol/L H2SO4 (b)电解质中经过5000圈循环伏安曲线测试前后线性伏安曲线的对比图

    Figure  8.  Polarization curves recorded before and after 5000 potential cycles of commercial Pt/C in 1 mol/L KOH (a) and 0.5 mol/L H2SO4 (b)

    图  9  催化剂RuSA+NC/C-2和对比样品在0.5 mol/L H2SO4溶液中的HER性能:(a) 线性伏安曲线;(b) 质量活性;(c) 塔菲尔斜率;(d) 双电层电容值;(e) 催化剂RuSA+NC/C-2在经过5000圈循环伏安测试前后的线性伏安曲线对比;(f) 催化剂RuSA+NC/C-2的恒电位稳定性测试

    Figure  9.  HER performance of RuSA+NC/C-2 and contrast samples in 0.5 mol/L H2SO4: (a) LSV curves; (b) Mass activities; (c) Tafel slopes; (d) Cdl of RuSA+NC/C-2 and compared samples; (e) Polarization curves recorded before and after 5000 potential cycles of RuSA+NC/C-2; (f) Chronoamperometric curve of RuSA+NC/C-2

    图  10  催化剂Carbon (a)、RuSA/C (b)、RuSA+NC/C-1 (c)、RuSA+NC/C-2 (d)、RuSA+NC/C-3 (e)和商业Ru/C (f)在0.5 mol/L H2SO4电解质中0.1~0.2 V vs RHE电位区间不同扫速的循环伏安曲线

    Figure  10.  CV curves recorded at different scan rates for Carbon (a), RuSA/C (b), RuSA+NC/C-1(c), RuSA+NC/C-2 (d), RuSA+NC/C-3 (e) and commercial Ru/C (f) in a non-Faradaic potential window from 0.1-0.2 V vs RHE in 0.5 mol/L H2SO4

    图  11  不同退火温度制备的催化剂RuSA+NC/C-2-X在1 mol/L KOH中的线性伏安曲线(a)和双电层电容(b);催化剂RuSA+NC/C-2-600 (c)和RuSA+NC/C-2-800 (d)在非法拉第区间0.1~0.2 V vs RHE不同扫速下的循环伏安曲线

    Figure  11.  LSV curves (a) and Cdl (b) of RuSA+NC/C-2-X in 1 mol/L KOH; CV curves recorded at different scan rates for RuSA+NC/C-2-600 (c) and RuSA+NC/C-2-800 (d) in a non-Faradaic potential window from 0.1-0.2 V vs RHE in 1 mol/L KOH

    图  12  不同温度下退火制备的催化剂RuSA+NC/C-2-X在0.5 mol/L H2SO4电解质中的线性伏安曲线(a)和双电层电容(b);催化剂RuSA+NC/C-2-600 (c)和RuSA+NC/C-2-800 (d)在非法拉第区间0.1~0.2 V vs RHE不同扫速下的循环伏安曲线

    Figure  12.  LSV curves (a) and Cdl (b) of RuSA+NC/C-2-X in 0.5 mol/L H2SO4; CV curves recorded at different scan rates for RuSA+NC/C-2-600 (c) and RuSA+NC/C-2-800 (d) in a non-Faradaic potential window from 0.1-0.2 V vs RHE in 0.5 mol/L H2SO4

    表  1  不同催化剂的制备条件

    Table  1.   Preparation conditions of different catalysts

    Sample RuCl3·xH2O/mg Annealing temperature/℃
    Carbon 0 700
    RuSA/C 20 700
    RuSA+NC/C-1 50 700
    RuSA+NC/C-2 100 700
    RuSA+NC/C-3 150 700
    RuSA+NC/C-2-600 100 600
    RuSA+NC/C-2-800 100 800
    下载: 导出CSV
  • [1] ZOU X, ZHANG Y. Noble metal-free hydrogen evolution catalysts for water splitting[J]. Chemical Society Reviews,2015,44(15):5148-5180. doi: 10.1039/C4CS00448E
    [2] SUNTIVICH J, MAY K J, GASTEIGER H A, et al. A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles[J]. Science,2011,334(6061):1383-1385. doi: 10.1126/science.1212858
    [3] JIANG W J, TANG T, ZHANG Y, et al. Synergistic modulation of non-precious-metal electrocatalysts for advanced water splitting[J]. Accounts of Chemical Research,2020,53(6):1111-1123. doi: 10.1021/acs.accounts.0c00127
    [4] 姚素薇, 李贺, 张卫国, 等. AC/ Ni-Co 复合电极材料的制备及其催化析氢性能[J]. 复合材料学报, 2006, 23(3):77-81. doi: 10.3321/j.issn:1000-3851.2006.03.015

    YAO Suwei, LI He, ZHANG Weiguo, et al. Preparation and property for hydrogen evolution of AC ( activated char) /Ni-Co composite electrode materials[J]. Acta Materiae Compositae Sinica,2006,23(3):77-81(in Chinese). doi: 10.3321/j.issn:1000-3851.2006.03.015
    [5] 吴诗德, 张桂伟, 黄思光, 等. Ni-NiO/N-C的制备及其电解水析氢性能[J]. 复合材料学报, 2022, 39(4):1667-1677.

    WU Shide, ZHANG Guiwei, HUANG Siguang, et al. Preparation of Ni-NiO/N-C electrocatalyst and its performance for water splitting into hydrogen[J]. Acta Materiae Compositae Sinica,2022,39(4):1667-1677(in Chinese).
    [6] JIANG X, JANG H, LIU S, et al. The heterostructure of Ru2P/WO3/NPC synergistically promotes H2O dissociation for improved hydrogen evolution[J]. Angewandte Chemie International Edition,2021,60(8):4110-4116. doi: 10.1002/anie.202014411
    [7] ZHANG B, YANG F, LIU X, et al. Phosphorus doped nickel-molybdenum aerogel for efficient overall water splitting[J]. Applied Catalysis B: Environmental,2021,298:120494-120504. doi: 10.1016/j.apcatb.2021.120494
    [8] LIANG J, LIU Q, LI T, et al. Magnetron sputtering enabled sustainable synthesis of nanomaterials for energy electrocatalysis[J]. Green Chemistry,2021,23(8):2834-2867. doi: 10.1039/D0GC03994B
    [9] ZHAO L, ZHANG Y, ZHANG Z L, et al. Steering elementary steps towards efficient alkaline hydrogen evolution via size-dependent Ni/NiO nanoscale heterosurfaces[J]. National Science Review,2020,7(1):27-36. doi: 10.1093/nsr/nwz145
    [10] QIN Q, JANG H, LI P, et al. A tannic acid-derived N-, P-codoped carbon-supported iron-based nanocomposite as an advanced trifunctional electrocatalyst for the overall water splitting cells and zinc-air batteries[J]. Advanced Energy Materials,2019,9(5):1803312-1803325. doi: 10.1002/aenm.201803312
    [11] QIN Q, JANG H, CHEN L, et al. Low loading of RhxP and RuP on N, P codoped carbon as two trifunctional electrocatalysts for the oxygen and hydrogen electrode reactions[J]. Advanced Energy Materials,2018,8(29):1801478-1801490. doi: 10.1002/aenm.201801478
    [12] BAE S Y, MAHMOOD J, JEON I Y, et al. Recent advances in ruthenium-based electrocatalysts for the hydrogen evolution reaction[J]. Nanoscale Horizons,2020,5(1):43-56. doi: 10.1039/C9NH00485H
    [13] MAHMOOD J, LI F, JUNG S M, et al. An efficient and pH-universal ruthenium-based catalyst for the hydrogen evolution reaction[J]. Nature Nanotechnology,2017,12(5):441-446. doi: 10.1038/nnano.2016.304
    [14] MITCHELL W J, XIE J, JACHIMOWSKI T A, et al. Carbon monoxide hydrogenation on the Ru(001) surface at low temperature using gas-phase atomic hydrogen: Spectroscopic evidence for the carbonyl insertion mechanism on a transition metal surface[J]. Journal of the American Chemical Society,1995,117(9):2606-2617. doi: 10.1021/ja00114a025
    [15] BARMAN B K, DAS D, NANDA K K. Facile synthesis of ultrafine Ru nanocrystal supported N-doped graphene as an exceptional hydrogen evolution electrocatalyst in both alkaline and acidic media[J]. Sustainable Energy & Fuels,2017,1(5):1028-1033.
    [16] XIE Q, WANG Z, LIN L, et al. Nanoscaled and atomic ruthenium electrocatalysts confined inside super-hydrophilic carbon nanofibers for efficient hydrogen evolution reaction[J]. Small,2021,17(38):2102160-2102180. doi: 10.1002/smll.202102160
    [17] CAO D, WANG J, XU H, et al. Construction of dual-site atomically dispersed electrocatalysts with Ru-C5 single atoms and Ru-O4 nanoclusters for accelerated alkali hydrogen evolution[J]. Small,2021,17(31):2101163-2101172. doi: 10.1002/smll.202101163
    [18] YANG J, CHEN B, LIU X, et al. Efficient and robust hydrogen evolution: Phosphorus nitride imide nanotubes as supports for anchoring single ruthenium sites[J]. Angewandte Chemie International Edition,2018,130(30):9495-9500.
    [19] IBRAHIM S M, EL SALMAWI K M, ZAHRAN A H. Synthesis of crosslinked superabsorbent carboxymethyl cellulose/acrylamide hydrogels through electron-beam irradiation[J]. Journal of Applied Polymer Science, 2007, 104(3): 2003-2008.
    [20] FEI B, WACH R A, MITOMO H, et al. Hydrogel of biodegradable cellulose derivatives. I. Radiation-induced crosslinking of CMC[J]. Journal of Applied Polymer Science,2000,78(2):278-283. doi: 10.1002/1097-4628(20001010)78:2<278::AID-APP60>3.0.CO;2-9
    [21] YADOLLAHI M, GHOLAMALI I, NAMAZI H, et al. Synthesis and characterization of antibacterial carboxymethyl cellulose/ZnO nanocomposite hydrogels[J]. International Journal of Biological Macromolecules,2015,74:136-141. doi: 10.1016/j.ijbiomac.2014.11.032
    [22] TAN J, LIU R, WANG W, et al. Controllable aggregation and reversible pH sensitivity of AuNPs regulated by carboxymethyl cellulose[J]. Langmuir,2010,26(3):2093-2098. doi: 10.1021/la902593e
    [23] LI J, LI H, XIE W, et al. Flame-assisted synthesis of O-coordinated single-atom catalysts for efficient electrocatalytic oxygen reduction and hydrogen evolution reaction[J]. Small Methods,2022,6(1):2101324-2101333. doi: 10.1002/smtd.202101324
    [24] PIMENTA M A, DRESSELHAUS G, DRESSELHAUS M S, et al. Studying disorder in graphite-based systems by Raman spectroscopy[J]. Physical Chemistry Chemical Physics,2007,9(11):1276-1290. doi: 10.1039/B613962K
    [25] SHANG Y, XU X, GAO B, et al. Single-atom catalysis in advanced oxidation processes for environmental remediation[J]. Chemical Society Reviews,2021,50(8):5281-5322. doi: 10.1039/D0CS01032D
    [26] LI D, JIA Y, CHANG G, et al. A defect-driven metal-free electrocatalyst for oxygen reduction in acidic electrolyte[J]. Chem,2018,4(10):2345-2356. doi: 10.1016/j.chempr.2018.07.005
    [27] TUAN D D, LIN K Y. Ruthenium supported on ZIF-67 as an enhanced catalyst for hydrogen generation from hydrolysis of sodium borohydride[J]. Chemical Engineering Journal,2018,351:48-55. doi: 10.1016/j.cej.2018.06.082
    [28] LIU K, LI Z, XIE W, et al. Oxygen-rich carbon nanotube networks for enhanced lithium metal anode[J]. Energy Storage Materials,2018,15:308-314. doi: 10.1016/j.ensm.2018.05.025
    [29] PENG J, CHEN Y, WANG K, et al. High-performance Ru-based electrocatalyst composed of Ru nanoparticles and Ru single atoms for hydrogen evolution reaction in alkaline solution[J]. International Journal of Hydrogen Energy,2020,45(38):18840-18849. doi: 10.1016/j.ijhydene.2020.05.064
  • 加载中
图(13) / 表(1)
计量
  • 文章访问数:  977
  • HTML全文浏览量:  506
  • PDF下载量:  65
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-15
  • 修回日期:  2022-05-05
  • 录用日期:  2022-05-08
  • 网络出版日期:  2022-05-12
  • 刊出日期:  2023-04-15

目录

    /

    返回文章
    返回