留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

曲面结构石英纤维增强树脂复合材料分层损伤缺陷太赫兹智能检测

王强 赵博研 刘秋寒 刘文权 高建国 张鹏涛

王强, 赵博研, 刘秋寒, 等. 曲面结构石英纤维增强树脂复合材料分层损伤缺陷太赫兹智能检测[J]. 复合材料学报, 2022, 40(0): 1-13
引用本文: 王强, 赵博研, 刘秋寒, 等. 曲面结构石英纤维增强树脂复合材料分层损伤缺陷太赫兹智能检测[J]. 复合材料学报, 2022, 40(0): 1-13
Qiang WANG, Boyan ZHAO, Qiuhan LIU, Wenquan LIU, Jianguo GAO, Pengtao ZHANG. Intelligent detection of delamination defect in curved structural quartz fiber reinforced polymer composites using terahertz technology[J]. Acta Materiae Compositae Sinica.
Citation: Qiang WANG, Boyan ZHAO, Qiuhan LIU, Wenquan LIU, Jianguo GAO, Pengtao ZHANG. Intelligent detection of delamination defect in curved structural quartz fiber reinforced polymer composites using terahertz technology[J]. Acta Materiae Compositae Sinica.

曲面结构石英纤维增强树脂复合材料分层损伤缺陷太赫兹智能检测

详细信息
    通讯作者:

    刘秋寒,博士研究生,研究方向为太赫兹时域光谱、无损检测、机器学习 E-mail:774030434@qq.com

  • 中图分类号: TP391.4;V19

Intelligent detection of delamination defect in curved structural quartz fiber reinforced polymer composites using terahertz technology

  • 摘要: 为探索先进预警机雷达罩石英纤维增强树脂复合材料中典型分层缺陷的智能化检测手段,将协作机器人与反射式太赫兹时域光谱系统相结合,搭建了一种基于光纤耦合的反射式太赫兹时域光谱扫查系统,测试所得信噪比的动态范围约60 dB。利用搭建系统对预埋模拟分层缺陷的曲面结构石英纤维增强树脂复合材料样件进行太赫兹无损检测,不同扫描区域获得的反射式太赫兹成像图中均能通过目视辨认出内部预埋缺陷。利用改进的YOLOv4算法在缺陷自动识别中获得90.18%的准确率和91.26%召回率,分别较原YOLOv4算法提高3.37%和4.01%,对小目标缺陷的检测效果良好。实验丰富了预警机雷达罩样件的设计和检测研究内容,探索了曲面结构石英纤维增强树脂复合材料缺陷太赫兹成像,为预警机雷达罩的无损检测提供了新的智能检测工艺,具备工程应用价值。

     

  • 图  1  石英纤维增强树脂复合材料(QFRP)样件实物三视图及3D效果图

    Figure  1.  Three views and 3D renderings of quartz fiber reinforced polymer (QFRP) sample

    图  2  曲面结构QFPR缺陷分布及信息示意图

    Figure  2.  Schematic diagram of defect distribution and information of curved structural QFRP

    图  3  基于协作机器人的光纤耦合式太赫兹时域光谱系统各模块内聚耦合关系示意图

    Figure  3.  Schematic diagram of the cohesive coupling relationship between the modules of a collaborative robot-based fiber-coupled terahertz time-domain spectroscopy system

    图  4  太赫兹频域信号

    Figure  4.  Terahertz frequency domain signal

    图  5  曲面结构QFRP工件坐标系标定示意图

    Figure  5.  Schematic diagram of workpiece coordinates calibration of curved structural QFRP

    图  6  曲面结构QFRP预实验扫查区域示意图

    Figure  6.  Schematic diagram of pre-experimental scan area of curved structural QFRP

    图  7  曲面结构QFRP样件表面轮廓与扫查坐标对比

    Figure  7.  Comparison of curved structural QFRP sample surface contour and scanning coordinates

    图  8  反射太赫兹层析成像原理图

    Figure  8.  Reflection terahertz tomography schematic

    图  9  曲面结构QFRP重点扫描区域示意图

    Figure  9.  Schematic diagram of key scanning areas of curved structural QFRP

    图  10  曲面结构QFRP不同区域中选定点的太赫兹时域信号幅值

    Figure  10.  Amplitude of terahertz time-domain signals of selected points at different areas of curved structural QFRP

    图  11  曲面结构QFRP小区域成像结果

    Figure  11.  Imaging results of the small area of curved structural QFRP

    图  12  曲面结构QFRP小区域二维成像伪彩图

    Figure  12.  Two-dimensional imaging pseudo-color image of small area of curved structural QFRP

    图  13  曲面结构QFRP重点区域成像结果

    Figure  13.  Imaging results of key area of curved structural QFRP

    图  14  曲面结构QFRP重点区域二维成像伪彩图

    Figure  14.  Two-dimensional imaging pseudo-color image of key area of curved structural QFRP

    图  15  曲面结构QFRP实验成像图裁剪结果

    Figure  15.  Intercept results of experimental imaging diagram of curved structural QFRP

    图  16  检测实验实况图

    Figure  16.  Test experiment diagram

    图  17  曲面结构QFRP数据增强效果示意图

    Figure  17.  Schematic of the data enhancement effect of curved structural QFRP

    图  18  曲面结构QFRP测试图一的目标检测效果

    Figure  18.  Target detection effect of test figure one of curved structural QFRP

    图  19  曲面结构QFRP测试图二的目标检测效果

    Figure  19.  Target detection effect of test figure two of curved structural QFRP

    表  1  曲面结构QFRP实验结果

    Table  1.   Experiment results of curved structural QFRP

    Test modelP/%R/%
    YOLOv486.8187.25
    YOLOv4-B87.5788.51
    YOLOv4-C90.1891.26
    Notes: P—Percision; R—Recall.
    下载: 导出CSV
  • [1] 曹晨. 预警机发展七十年[J]. 中国电子科学研究院学报, 2015, 10(2):113-118+137. doi: 10.3969/j.issn.1673-5692.2015.02.001

    CAO C. Developments of AEW System for 70 Years[J]. Journal of CAEIT,2015,10(2):113-118+137(in Chinese). doi: 10.3969/j.issn.1673-5692.2015.02.001
    [2] 王飞, 石佩洛. 树脂基复合材料在雷达天线罩领域的应用及发展[J]. 宇航材料工艺, 2017, 47(2):10-13.

    WANG F, SHI P L. Application and Development of Resin Matric Composites for Radomes[J]. Aerospace Materials and Technology,2017,47(2):10-13(in Chinese).
    [3] 赵云峰. 先进纤维增强树脂基复合材料在航空航天工业中的应用[J]. 军民两用技术与产品, 2010(1):4-6. doi: 10.3969/j.issn.1009-8119.2010.01.002

    ZHAO Y F. Application of advanced fiber reinforced resin matrix composites in aerospace industry[J]. Du-al Use Technologies & Products,2010(1):4-6(in Chinese). doi: 10.3969/j.issn.1009-8119.2010.01.002
    [4] 方芳. 先进复合材料在雷达上的应用[J]. 电子机械工程, 2013, 29(1):27-31+54. doi: 10.3969/j.issn.1008-5300.2013.01.007

    FANG F. Application of Advanced Composite to Ra-dar[J]. Electro-Mechanical Engineering,2013,29(1):27-31+54(in Chinese). doi: 10.3969/j.issn.1008-5300.2013.01.007
    [5] 肖卫东, 黄一清, 蔡正燕. 潜用雷达天线罩材料及成型工艺研究[J]. 造船技术, 2013(5):24-25+29. doi: 10.3969/j.issn.1000-3878.2013.05.006

    XIAO W D, HUANG Y Q, CAI Z Y. Research on materials and forming process of submarine ra-dome[J]. Marine Technology,2013(5):24-25+29(in Chinese). doi: 10.3969/j.issn.1000-3878.2013.05.006
    [6] Shin H J, Park J Y, Hong S C, et al. In situ non-destructive evaluation of an aircraft UHF antenna ra-dome based on pulse-echo ultrasonic propagation imaging[J]. Composite Structures,2017,160:16-22. doi: 10.1016/j.compstruct.2016.10.058
    [7] 严罡. 基于介电常数调制的雷达罩蜂窝积水缺陷的检测技术研究[D]. 南京: 南京航空航天大学, 2017.

    YAN G. The Research on Detection technology for Measuring Water in Curved Surface Radome Honey-comb based on the Dielectric Constant Modula-tion[D]. Nanjing: Nanjing University of Aeronautics and As-tronautics, 2017 (in Chinese).
    [8] Fabian F, Karl M, Bessem B, et al. Terahertz Radome Inspection[J]. Photonics, 2018, 5(1).
    [9] WANG Y, CHEN Z, ZHAO Z, et al. Restoration of te-rahertz signals distorted by atmospheric water vapor absorption[J]. Journal of Applied Physics,2009,105(10):3667.
    [10] 许景周, 张希成. 太赫兹科学技术和应用[M]. 北京: 北京大学出版社, 2007.

    XU J Z, ZHANG X C. Terahertz Science and Tech-nology and Applications[M]. Beijing: Peking Univer-sity Press, 2007 (in Chinese).
    [11] WANG Q, LI X, CHANG T, et al. Terahertz spectroscopic study of aeronautical composite matrix resins with different dielectric properties[J]. Optik,2018:101-111.
    [12] 张瑾. 纤维增强复合材料的太赫兹无损检测研究[D]. 长春: 吉林大学, 2016.

    ZHANG J, Nondestructive evaluation of fiber-reinforced polymer composite using terahertz tech-nology[D]. Changchun: Jilin University, 2016 (in Chinese).
    [13] 邢砾云. 航空泡沫芯材及夹层结构的太赫兹无损检测研究[D]. 长春: 吉林大学, 2016.

    XING L Y, Nondestructive testing of aviation foam core materials and sandwich structure using terahertz time domain spectroscopic imaging technology[D]. Changchun: Jilin University, 2016 (in Chinese).
    [14] Kim D H, Ryu C H, Park S H, et al. Nondestructive evaluation of hidden damages in glass fiber rein-forced plastic by using the terahertz spectroscopy[J]. International Journal of Precision Engineering and Manufacturing-Green Technology,2017,4(2):211-219. doi: 10.1007/s40684-017-0026-x
    [15] WANG Q, LI X Y, CHANG T, et al. Nondestructive imag-ing of hidden defects in aircraft sandwich composites using terahertz time-domain spectroscopy[J]. Infrared Physics & Technology, 2019.
    [16] 张丹丹, 任姣姣, 李丽娟, 等. 玻璃纤维蜂窝复合材料的太赫兹无损检测技术[J]. 光子学报, 2019, 48(2):0212002. doi: 10.3788/gzxb20194802.0212002

    ZHANG D D, REN J J, LI L J, et al. Terahertz non-destructive testing technology for glass fiber honeycomb composites[J]. Acta Photonica Sinica,2019,48(2):0212002(in Chinese). doi: 10.3788/gzxb20194802.0212002
    [17] 周桐宇, 李丽娟, 任姣姣, 等. 基于FDTD的玻璃纤维增强复合材料脉冲太赫兹无损检测[J]. 光学学报, 2020, 40(12):196-204.

    ZHOU T Y, LI L J, REN J J, et al. Pulsed Terahertz Nondestructive Testing of Glass Fiber Reinforced Plastics Based on FDTD[J]. Acta OPtica Sinica,2020,40(12):196-204(in Chinese).
    [18] 王赫楠, 任姣姣, 张丹丹, 等. 基于连续小波变换的玻璃纤维增强树脂复合材料太赫兹特征增强及缺陷成像[J]. 复合材料学报, 2021, 38(12):4190-4197.

    WANG H N, REN J J, ZHANG D D, GU J, ZHANG J Y, LI L J. Glass fiber reinforced polymer terahertz feature enhancement and defect imaging based on continuous wavelet transform[J]. Acta Materiae Compositae Sinica,2021,38(12):4190-4197(in Chinese).
    [19] 李萌, 何明霞, 田震. 太赫兹时域频谱信噪比分析与规范性研究[J]. 光谱学与光谱分析, 2012, 32(3):606-609. doi: 10.3964/j.issn.1000-0593(2012)03-0606-04

    LI M, HE M X, TIAN Z. Studies on Signal-to-Noise Ratio Standardization for THz Time-Domain Spec-troscopy[J]. Spectroscopy and Spectral Analysis,2012,32(3):606-609(in Chinese). doi: 10.3964/j.issn.1000-0593(2012)03-0606-04
    [20] 雷韶. 6 R工业机器人的运动轨迹规划及仿真研究[D]. 太原: 中北大学, 2017.

    LEI SH. The motion trajectory planning and Simula-tion of 6 R industrial robot[D]. Taiyuan: North University of China, 2017 (in Chinese).
    [21] Mittleman D M, Hunsche S, Boivin L, et al. T-ray tomography[J]. Optics Letters,1997,22(12):904. doi: 10.1364/OL.22.000904
    [22] 赵博研, 王强, 王毅, 等. 改进YOLOv4算法的GFRP内部缺陷检测与识别[J]. 空军工程大学学报(自然科学版), 2021, 22(4):55-62.

    ZHAO B Y, WANG Q, WANG Y, et al. Research on Detection and Recognition of GFRP Internal Defect Based on Modified YOLOv4 Algorithm[J]. Journal of Air Force Engineering University (Natural Science Edition),2021,22(4):55-62(in Chinese).
    [23] LIU S, QI L, QIN H, et al. Path Aggregation Network for Instance Segmentation// 2018 IEEE/CVF Con-ference on Computer Vision and Pattern Recognition (CVPR)[J]. IEEE,2018:8759-8768.
    [24] 杨丽娟, 张白桦, 叶旭桢. 快速傅里叶变换FFT及其应用[J]. 光电工程, 2004(S1):1-3+7.

    YANG L J, ZHANG B H, TIAN Z. Fast Fourier trans-form and its applications[J]. Opto-Electronic Engi-neering,2004(S1):1-3+7(in Chinese).
    [25] 张存林, 牧凯军. 太赫兹波谱与成像[J]. 激光与光电子学进展, 2010, 47(2):1-14.

    ZHANG C L, MU K J. Terahertz Spectroscopy and Imaging[J]. Laser & Optoelectronics Progress,2010,47(2):1-14(in Chinese).
    [26] YUN S, HAN D, CHUN S, et al. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features[C]// 2019 IEEE/CVF International Confer-ence on Computer Vision(ICCV), 2019: 6023-6032.
    [27] Dollar P, Wojek C, Schiele B, et al. Pedestrian detec-tion: A benchmark[C]// IEEE Conference on Com-puter Vision and Patten Recognition(CVPR), 2009: 304-311.
  • 加载中
计量
  • 文章访问数:  54
  • HTML全文浏览量:  42
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-17
  • 录用日期:  2022-05-01
  • 修回日期:  2022-04-21
  • 网络出版日期:  2022-05-28

目录

    /

    返回文章
    返回