留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

膨胀珍珠岩内养护混凝土抗压强度增长机制及数学模型的建立

刘玮 张玉 李珠 赵福垚 王廷俊

刘玮, 张玉, 李珠, 等. 膨胀珍珠岩内养护混凝土抗压强度增长机制及数学模型的建立[J]. 复合材料学报, 2022, 39(11): 5423-5435. doi: 10.13801/j.cnki.fhclxb.20210930.001
引用本文: 刘玮, 张玉, 李珠, 等. 膨胀珍珠岩内养护混凝土抗压强度增长机制及数学模型的建立[J]. 复合材料学报, 2022, 39(11): 5423-5435. doi: 10.13801/j.cnki.fhclxb.20210930.001
LIU Wei, ZHANG Yu, LI Zhu, et al. Growth mechanism of the compressive strength of expanded perlite internal curing concrete and establishment of mathematical model[J]. Acta Materiae Compositae Sinica, 2022, 39(11): 5423-5435. doi: 10.13801/j.cnki.fhclxb.20210930.001
Citation: LIU Wei, ZHANG Yu, LI Zhu, et al. Growth mechanism of the compressive strength of expanded perlite internal curing concrete and establishment of mathematical model[J]. Acta Materiae Compositae Sinica, 2022, 39(11): 5423-5435. doi: 10.13801/j.cnki.fhclxb.20210930.001

膨胀珍珠岩内养护混凝土抗压强度增长机制及数学模型的建立

doi: 10.13801/j.cnki.fhclxb.20210930.001
基金项目: 国家自然科学基金(51808375);长治医学院博士科研启动基金(BS202026)
详细信息
    通讯作者:

    李珠,博士,教授,博士生导师,研究方向为新型建筑结构体系及建筑节能材料 E-mail:lizhu9999@vip.sina.com

  • 中图分类号: TU528

Growth mechanism of the compressive strength of expanded perlite internal curing concrete and establishment of mathematical model

  • 摘要: 采用膨胀珍珠岩(EP)作为内养护材料,进行了混凝土抗压强度试验和EP-混凝土界面SEM试验,研究了EP的体积外掺率、预湿率和粒径对混凝土抗压强度增长的影响,最后经过公式推导,得到了EP的体积外掺率、预湿率和粒径三种因素影响下内养护浆体体积分数和水化反应程度的表达式,并结合Powers模型和混凝土抗压强度与孔隙率模型,建立了EP内养护混凝土抗压强度的数学模型。抗压强度试验结果表明,EP的内养护作用可以提高混凝土抗压强度及其增长速率。EP体积外掺率为30%的混凝土在90天强度会超过同龄期下普通混凝土(NC)的13%;EP预湿率为30%和50%的混凝土90天强度分别超过同龄期NC的6.3%和5.3%,强度增长速率呈先下降后上升的趋势;EP粒径为0.2~0.5 mm的混凝土90天强度超过同龄期NC的6.4%,强度早期增长缓慢,后期增长较快;EP粒径为1.5~3.5 mm和0.5~1.5 mm的混凝土抗压强度在前期增长较快,后期速率逐渐降低、稳定。SEM试验结果表明,EP的内养护作用可以促进水泥继续水化,产物水化硅酸钙(C-S-H)和钙矾石(AFt)数量增加,排列方式更加密集,对EP-混凝土界面微裂缝有填补的作用;EP的孔洞为水化产物提供了生长空间。数学模型验证结果表明,EP内养护混凝土抗压强度的数学模型曲线与90天强度试验值吻合良好,理论值与试验值误差小于12%。

     

  • 图  1  膨胀珍珠岩(EP)的SEM图像

    Figure  1.  SEM image of expanded perlite (EP)

    图  2  不同粒径的EP

    Figure  2.  EP with different particle sizes

    图  3  NC组普通骨料-混凝土不同龄期界面微观形貌

    Figure  3.  SEM images of normal aggregate-concrete interface of NC at different ages

    图  4  NC组普通骨料-混凝土不同龄期界面水化产物微观形貌

    Figure  4.  SEM images of normal aggregate-concrete interface hydration products of NC at different ages

    图  5  50%EP(50%PW-M)/C组 EP-混凝土界面过渡区不同龄期微观形貌

    Figure  5.  SEM images of EP-concrete interface of 50%EP(50%PW-M)/C at different ages

    图  6  50%EP(50%PW-M)/C组 EP-混凝土界面过渡区不同龄期水化产物微观形貌

    Figure  6.  SEM images of EP-concrete interface hydration products of 50%EP(50%PW-M)/C at different ages

    C-S-H—Hydrated calcium silicate; AFt—Ettringite; CH—Calcium hydroxide

    图  7  不同EP体积外掺率混凝土的抗压强度

    Figure  7.  Compressive strength of concrete with different EP admixture rates

    图  8  不同EP体积外掺率混凝土的抗压强度日平均增长率

    Figure  8.  Compressive strength daily average growth rate of concrete with different EP admixture rates

    图  9  不同EP预湿率混凝土的抗压强度

    Figure  9.  Compressive strength of concrete with different EP prewetting rates

    图  10  不同EP预湿率混凝土的抗压强度日平均增长率

    Figure  10.  Compressive strength daily average growth rate of concrete with different EP prewetting rates

    图  11  不同EP粒径混凝土的抗压强度

    Figure  11.  Compressive strength of concrete with different EP particle sizes

    图  12  不同EP粒径混凝土的抗压强度日平均增长率

    Figure  12.  Compressive strength daily average growth rate of concrete with different EP particle sizes

    图  13  NC混凝土抗压强度与孔隙率曲线拟合

    Figure  13.  Curve fitting of NC concrete compressive strength and porosity

    R2—Fitting degree

    图  14  EP混凝土90天抗压强度与外掺率曲线拟合

    Figure  14.  Curve fitting of EP concrete 90 days compressive strength and admixture rate

    图  15  EP筒压强度比与粒径比的曲线拟合

    Figure  15.  Curve fitting of EP cylinder compressive strength and particle size ratio

    图  16  EP 1 h体积吸水率与粒径比的曲线拟合

    Figure  16.  Curve fitting of EP 1 h volumetric water absorption and particle size ratio

    图  17  EP混凝土90天抗压强度与外掺率的关系

    Figure  17.  Relationship between 90 days compressive strength of EP concrete and admixture rate

    Δ—Mean absolute percentage error

    图  18  EP混凝土90天抗压强度与预湿率的关系

    Figure  18.  Relationship between 90 days compressive strength of EP concrete and prewetting rate

    图  19  EP混凝土90天抗压强度与粒径的关系

    Figure  19.  Relationship between 90 days compressive strength of EP concrete and particle size

    表  1  EP的材料参数

    Table  1.   Material parameters of EP

    Particle
    size/mm
    Bulk density/
    (kg·m−3)
    Cylinder compressive
    strength/kPa
    1 h mass water
    absorption/%
    1 h volumetric
    water absorption/%
    0.2-0.5 77.3 72.1 430 33.2
    0.5-1.5 81.4 61.8 372 30.3
    1.5-3.5 74.4 54.6 228 16.9
    下载: 导出CSV

    表  2  内养护混凝土配合比

    Table  2.   Mix proportion of internal curing concrete

    GroupAdmixture
    rate/%
    Prewetting (PW)
    rate/%
    Particle
    size/mm
    Total water consumption/(kg·m−3)Slump/
    mm
    Pre-wet water consumptionNet water consumption
    NC 0 0.5-1.5 0 240 130
    30%EP(100%PW-M)/C 30 100 0.5-1.5 91 176 140
    50%EP(100%PW-M)/C 50 100 0.5-1.5 151 125 125
    70%EP(100%PW-M)/C 70 100 0.5-1.5 212 102 135
    100%EP(100%PW-M)/C 100 100 0.5-1.5 303 23 140
    50%EP(0%PW-M)/C 50 0 0.5-1.5 0 378 138
    50%EP(30%PW-M)/C 50 30 0.5-1.5 45 198 120
    50%EP(50%PW-M)/C 50 50 0.5-1.5 76 177 120
    50%EP(70%PW-M)/C 50 70 0.5-1.5 106 172 122
    50%EP(100%PW-M)/C 50 100 0.5-1.5 151 125 125
    50%EP(100%PW-S)/C 50 100 0.2-0.5 160 130 140
    50%EP(100%PW-M)/C 50 100 0.5-1.5 151 125 125
    50%EP(100%PW-L)/C 50 100 1.5-3.5 85 185 133
    Notes: NC—Normal concrete; S, M and L—Particle sizes like “small”, “medium” and “large”, respectively; C—Concrete.
    下载: 导出CSV

    表  3  NC组混凝土配合比

    Table  3.   Mix proportion of concrete for NC group

    Stone/(kg·m−3)Sand/(kg·m−3)Cement/(kg·m−3)Water/(kg·m−3)Water-cement ratio
    997 536 463 240 0.52
    下载: 导出CSV
  • [1] 缪昌文, 穆松. 混凝土技术的发展与展望[J]. 硅酸盐通报, 2020, 39(1):1-11.

    LIAO Changwen, MU Song. Development and prospect of concrete technology[J]. Bulletin of the Chinese Ceramic Society,2020,39(1):1-11(in Chinese).
    [2] 王冲, 蒲心诚, 陈科, 等. 超低水胶比水泥浆体材料的水化进程测试[J]. 材料科学与工程学报, 2008, 26(6):852-857.

    WANG Chong, PU Xincheng, CHEN Ke, et al. Measurement of hydration progress of cement paste materials with extreme-low W/B[J]. Journal of Materials Science and Engineering,2008,26(6):852-857(in Chinese).
    [3] 胡姗, 张洋, 燕达, 等. 中国建筑领域能耗与碳排放的界定与核算[J]. 建筑科学, 2020, 36(S2):288-297.

    HU Shan, ZHANG Yang, YAN Da, et al. Definition and modelling of energy consumption and carbon emissions in China’s building sector[J]. Building Science,2020,36(S2):288-297(in Chinese).
    [4] MEHTA P K. Materials science of concrete II[J]. Cement and Concrete Composites,1992,14(1):71-72. doi: 10.1016/0958-9465(92)90041-S
    [5] 胡曙光, 周宇飞, 王发洲, 等. 高吸水性树脂颗粒对混凝土自收缩与强度的影响[J]. 华中科技大学学报(城市科学版), 2008, 25(1):1-4.

    HU Shuguang, ZHOU Yufei, WANG Fazhou, et al. Influence of super absorbent polymer particles on autogenous shrinkage and compressive strength of concrete[J]. Journal of Huazhong University of Science and Technology Urban Science,2008,25(1):1-4(in Chinese).
    [6] BALAPOUR M, ZHAO W, GARBOCZI E J, et al. Potential use of lightweight aggregate (LWA) produced from bottom coal ash for internal curing of concrete systems[J]. Cement and Concrete Composites,2019,105:103428.
    [7] 杨进. 高吸水树脂内养护混凝土的微观结构与性能[D]. 武汉: 武汉理工大学, 2017.

    YANG Jin. Microstructure and performance of internal curing concrete by SAP[D]. Wuhan: Wuhan University of Technology, 2017(in Chinese).
    [8] 张磊. 预湿轻骨料内养护自密实混凝土效果评价方法研究[D]. 大连: 大连理工大学, 2020.

    ZHANG Lei. Evaluation method on the internal curing effect of self-compacting concrete by pre-wet lightweight aggregates[D]. Dalian: Dalian University of Technology, 2020(in Chinese).
    [9] 易双秦, 刘开志, 邱晶, 等. 吸水珊瑚砂作为超高性能混凝土(UHPC)内养护介质的研究[J]. 硅酸盐通报, 2019, 38(8):2506-2512.

    YI Shuangqin, LIU Kaizhi, QIU Jing, et al. Study on pre-wet coral sand as internal curing agent in ultra-high-perfor-mance concrete (UHPC)[J]. Bulletin of the Chinese Ceramic Society,2019,38(8):2506-2512(in Chinese).
    [10] 姜玉丹, 金祖权, 陈永丰, 等. 高吸水树脂对混凝土水化及强度的影响[J]. 材料导报, 2017, 31(24):40-44. doi: 10.11896/j.issn.1005-023X.2017.024.009

    JIANG Yudan, JIN Zuquan, CHEN Yongfeng, et al. Influence of super-absorbent polymer on hydration and compressive strength of concrete[J]. Materials Review,2017,31(24):40-44(in Chinese). doi: 10.11896/j.issn.1005-023X.2017.024.009
    [11] 王奕哲. 内养护高强混凝土性能研究[J]. 新型建筑材料, 2017, 44(10):55-57. doi: 10.3969/j.issn.1001-702X.2017.10.014

    WANG Yizhe. Study on performance of inner curing high strength concrete[J]. New Building Materials,2017,44(10):55-57(in Chinese). doi: 10.3969/j.issn.1001-702X.2017.10.014
    [12] 陈鹏, 金祖权, 李建强, 等. 盐渍土环境下高吸水树脂混凝土抗压强度及氯离子渗透研究[J]. 海洋工程, 2017, 35(2):50-55.

    CHEN Peng, JIN Zuquan, LI Jianqiang, et al. Compressive strength and chloride penetration of SAP concrete in saline soil environment[J]. Ocean Engineering,2017,35(2):50-55(in Chinese).
    [13] YANG L, SHI C, LIU J, et al. Factors affecting the effectiveness of internal curing: A review[J]. Construction and Building Materials,2020,267:121017.
    [14] JIANG L, JIA G, JIANG C, et al. Sugar-coated expanded perlite as a bacterial carrier for crack-healing concrete applications[J]. Construction and Building Materials,2020,232(7):117222.
    [15] 王柏顺, 张家广, 周梦君, 等. 基于膨胀珍珠岩固载微生物的裂缝自修复混凝土劈裂抗拉强度试验研究[J]. 混凝土, 2020(3):20-23. doi: 10.3969/j.issn.1002-3550.2020.03.006

    WANG Baishun, ZHANG Jiaguang, ZHOU Mengjun, et al. Experimental study on splitting tensile strength of crack-healing concrete based on immobilizing bacteria in expanded perlite[J]. Concrete,2020(3):20-23(in Chinese). doi: 10.3969/j.issn.1002-3550.2020.03.006
    [16] 王文花, 李珠, 张家广, 等. 微生物矿化修复混凝土裂缝抗渗水性能试验研究[J]. 混凝土, 2020(3):29-32. doi: 10.3969/j.issn.1002-3550.2020.03.008

    WANG Wenhua, LI Zhu, ZHANG Jiaguang, et al. Experimental study on water permeation resistance of concrete crack healed by microbial mineralization[J]. Concrete,2020(3):29-32(in Chinese). doi: 10.3969/j.issn.1002-3550.2020.03.008
    [17] 赵福垚. 水泥基材料配合比设计科技建模及智能化前景浅探−基本原则、输入、输出与规律描述方式[J]. 混凝土, 2021(7):34-37. doi: 10.3969/j.issn.1002-3550.2021.07.007

    ZHAO Fuyao. Superficial discussion on the scientific modeling and intelligentialize of cement-based materials mix proportion design−Basic principles, input, output and description of laws[J]. Concrete,2021(7):34-37(in Chinese). doi: 10.3969/j.issn.1002-3550.2021.07.007
    [18] 赵福垚. 水泥基材料配合比设计科技建模及智能化前景浅探−建模以及行业对接的几个问题[J]. 混凝土, 2021(8):60-63.

    ZHAO Fuyao. Superficial discussion on the scientific modeling and intelligentialize of cement-based materials mix proportion design−Several issues on modeling and industry docking[J]. Concrete,2021(8):60-63(in Chinese).
    [19] 赵林. 玻化微珠保温混凝土的关键问题研究及工程示范[D]. 太原: 太原理工大学, 2015.

    ZHAO Lin. Study on the key problems of thermal insulation glazed hollow bead concrete and project demonstration[D]. Taiyuan: Taiyuan University of Technology, 2015(in Chinese).
    [20] 中华人民共和国住房和城乡建设部. 普通混凝土力学性能试验方法标准: GB/T 50081—2002[S]. 北京: 中国建筑工业出版社, 2003.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Standard for test methods of ordinary concrete mechanical properties: GB/T 50081—2002[S]. Beijing: China Architecture & Building Press, 2003(in Chinese).
    [21] 孙诗兵, 聂光临, 姚晓丹, 等. 膨胀珍珠岩掺加量对水泥砂浆性能的影响[J]. 混凝土, 2015(3):114-117. doi: 10.3969/j.issn.1002-3550.2015.03.031

    SUN Shibin, NIE Guanglin, YAO Xiaodan, et al. Influence of adding amount of expended perlite on the roperties of cement mortar[J]. Concrete,2015(3):114-117(in Chinese). doi: 10.3969/j.issn.1002-3550.2015.03.031
    [22] 聂光临, 孙诗兵, 姚晓丹, 等. 膨胀珍珠岩粒径对水泥砂浆性能的影响[J]. 混凝土与水泥制品, 2014(10):21-24. doi: 10.3969/j.issn.1000-4637.2014.10.005

    NIE Guanglin, SUN Shibing, YAO Xiaodan, et al. Influence of particle size of expended perlite on the properties of cement mortar[J]. China Concrete and Cement Products,2014(10):21-24(in Chinese). doi: 10.3969/j.issn.1000-4637.2014.10.005
    [23] 贾冠华, 刘鹏, 李珠. 气凝胶/膨胀珍珠岩的制备及其微观特征对导热性能的影响[J]. 硅酸盐通报, 2018, 37(3):1039-1046.

    JIA Guanhua, LIU Peng, LI Zhu. Preparation of aerogel/expanded perlite and influence of its microstructure on thermal conductivity[J]. Bulletin of the Chinese Ceramic Society,2018,37(3):1039-1046(in Chinese).
    [24] ZHUTOVSKY S, KONSTANTIN K, BENTUR A. Assessment of distance of water migration in internal curing of high-strength concrete[J]. American Concrete Institute, 2002, Special Publication: SP-220.
    [25] BENTZ D P, SNYDER K A. Protected paste volume in concrete: Extension to internal curing using saturated lightweight fine aggregate[J]. Cement and Concrete Research,1999,29(11):1863-1867. doi: 10.1016/S0008-8846(99)00178-7
    [26] RYSHKEWITCH E. Compression strength of porous sintered alumina and zirconia[J]. Journal of the American Ceramic Society,1953(36):65-68.
    [27] 向亚平, 魏亚, 张倩倩, 等. 轻细骨料内养护混凝土抗压强度与模拟[J]. 混凝土, 2013(3):44-47, 51. doi: 10.3969/j.issn.1002-3550.2013.03.012

    XIANG Yaping, WEI Ya, ZHANG Qianqian, et al. Compressive strength of internal curing concrete with lightweight fine aggregate-experiment and modeling[J]. Concrete,2013(3):44-47, 51(in Chinese). doi: 10.3969/j.issn.1002-3550.2013.03.012
    [28] POWERS T C, BROWNYARD T L. Studies of the physical properties of hardened portland cement paste[J]. Concrete International,1946(43):101-132.
    [29] GARBOCZI E J, BENTZ D P. Analytical formulas for interfacial transition zone properties[J]. Advanced Cement Based Materials,1997,6(3):99-108.
    [30] 高冲. 内养护水掺量与自收缩相关性的试验与机理研究[D]. 大连: 大连理工大学, 2019.

    GAO Chong. Experimental and mechanism study on the correlation between internal curing water content and autogenous shrinkage[D]. Dalian: Dalian University of Technology, 2019(in Chinese).
  • 加载中
图(19) / 表(3)
计量
  • 文章访问数:  805
  • HTML全文浏览量:  567
  • PDF下载量:  52
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-06
  • 修回日期:  2021-09-10
  • 录用日期:  2021-09-23
  • 网络出版日期:  2021-09-30
  • 刊出日期:  2022-11-01

目录

    /

    返回文章
    返回